Кут між висотою та бісектрисою, проведенимт з вершини прямого кута прямокутного трикутника, дорівнює 8°. Знайдіть і запишіть градусні міри гострих кутів заданого трикутника.
КВ и АЖ -медианы основания пирамиды. Р - точка касания цилиндра грани пирамиды. Рассечем пирамиду плоскостью, проходящей через точки ДКВ. Эта секущая плоскость пройдет через медиану основания пирамиды и через ось цилиндра. Значит в этой плоскость сечения цилиндра изобразится в виде квадрата.( цилиндр и плоскость его сечения изображены красным цветом). Поскольку пирамида правильная, то в её основании лежит равносторонний треугольник. В таком треугольнике медиана КВ является и высотой на АС. Значит КВ = √(ВС² - КС²) = √(3 - 3/4) = √9/4 = 3/2. КО = трети от ВК = (3/2)/3 =0,5. Радиус цилиндра - РМ обозначим Х. Высота цилиндра 2Х. Из подобия треугольников ДОК и ДМР следует, что ДО/ОК = ДМ/МР или 3/0,5 = (3-2Х)/Х, или 3Х = 1,5 - Х, или 4Х=1,5. Отсюда Х=1,5/4 =3/8. Площадь боковой поверхности цилиндра = π2Х×2Х = π4 X² = π16*9/64 = 2,25π
veronica1344
17.07.2021
Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Кут між висотою та бісектрисою, проведенимт з вершини прямого кута прямокутного трикутника, дорівнює 8°. Знайдіть і запишіть градусні міри гострих кутів заданого трикутника.