Olga1233
?>

Знайдіть координати вектора n , якщо В(–1;2; 3), С(0; – 1; – 2), А(– 3; – 2; – 1 n→=1/2(AB)→+(BC)→ PS: (→)-вектор

Геометрия

Ответы

morozova
Пункты 1) и 2) относятся к варианту, когда отрезок АМ вертикален, тогда плоскость МАВ тоже вертикальна.
1) В плоскости СДЕ провести отрезок ЕВ1, равный АВ и параллельный ему. Он одновременно находится в плоскости СДЕ и в вертикальной плоскости МАВ. Поэтому точка  F пересечения отрезка МВ с плоскостью СДЕ находится на пересечении отрезков МВ и ЕВ1.

2) В плоскости МАВ 2 подобных треугольника: МЕF и FF1B ( точка F1 - проекция точки F на АВ).
Отрезок FF1 равен ЕА.
Поэтому F1B = (3/2)*10 = 15 см.
АF1 = ЕF = 10 см.
Отсюда АВ = 10+15 = 25 см.

Примечание: данное решение - частный случай, так как где бы ни находилась точка М, ∆ MFE и ∆ AMB остаются подобными, отношение ЕF:AB=2:5, и АВ получается равным 25.
kondrashovalf6404
1. ΔABC:. AB=5 см, BC=7 см, AC=√18 см
<A -бОльший угол Δ АВС (против бОльшей стороны в треугольнике лежит бОльший угол).
по теореме косинусов:
BC²=AB²+AC²-2*AB*AC*cos<A
7²=5²+(√18)²-2*5*√18*сos<A
49-25-18=-10√18*cos<A
6=-10*3*√2*cos<A
cos<A=-1/5√2
<A=arccos(-1/(5√2))
<A≈98,13°.

2. ΔABC: AB=16 см, AC=18 см, BC=26 см
АК- медиана, проведенная к большей стороне. из ΔАВК по теореме косинусов: AK²=AB²+(BC/2)²-2*AB*(BC/2)*cos<B. cos<B=?
ΔАВС по теореме косинусов: AC²=AB²+BC²-2*AB*BC*cos<B
18²=16²+26²-2*16*26*cos<B
324-256-676=-2*16*26*cos<B
-608=-2*16*26*cos<B
cos<B=608/(2*16*26)
ΔABK: 
AK²=16²+13²-2*16*13*608/(2*16*26)
AK²=256+169-304
AK²=121
AK=11 см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайдіть координати вектора n , якщо В(–1;2; 3), С(0; – 1; – 2), А(– 3; – 2; – 1 n→=1/2(AB)→+(BC)→ PS: (→)-вектор
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Latsukirina
gordeevadesign2986
Tochkamail370
kogakinoa
vedaikin
mantseva
buleckovd8724
ksen1280
Borisovich-Volobueva1803
nikomuneskazhu60
nagas
Жукова_Петрович1281
АЛЕКСЕЙ
ladykalmikova81
mariy-inkina8