Поделитесь своими знаниями, ответьте на вопрос:
Два перпендикулярных отрезка KM и LN пересекаются в общей серединной точке P. Какой величины∡ N и ∡ K, если ∡ L = 85° и ∡ M = 5°? 1. Отрезки делятся пополам, значит, KP = , = LP, ∡ = ∡ MPL, так как прямые перпендикулярны и оба угла равны °. По первому признаку равенства треугольник KPN равен треугольнику MPL. 2. В равных треугольниках соответствующие углы равны. В этих треугольниках соответствующие ∡ и ∡ M, ∡ и∡ L. ∡ K = °; ∡ N =
Можно решить
Из прямоуг. треуг-ка АОВ найдем катеты( равны радиусу) 2Rквад = 324, или Rквад = 162. Теперь по известной формуле для прямоуг. тр-ка найдем искомое расстояние, а именно - высоту, опущенную на гипотенузу:
h = Rквад/АВ = 9см
треугольник АОВ - равнобедренный и прямоугольный по теореме Пифагора ОА = ОВ = 18 : sqrt2 = 9*sqrt2 обозначим h - расстояние от точки О до хорды, этот отрезок будет перпендикулярен хорде тогда площадь треугольника АОВ = ОА*ОВ/2 = АВ*h/2 отсюда h = ОА*ОВ/АВ = (9*SQRT2)^2/18 = 9 см