Трапеция АВСД. АВ=СД, точка М - касание на АВ, точка Л - касание на ВС, точка Р -касание на СД, точка Т -касание на АД
МВ/АМ=1/4, АМ=АТ как касательные проведенные из одной точки = ДК=ДР= 4 части угол А=уголД, ВМ=ВЛ=СЛ=СР = 1 части как касательные
АД = АТ+ДТ=4+4=8 частей
ВС=ВЛ+СЛ=1+1=2 части, проводим высоты ВН и СК на АД. треугольники АВН и КСД равны как прямоуголные треугольники по гипотенузе и острому углу уголА=уголД, АН=КД
четырехугольник НВСК - прямоугольник ВС=НК=2 части
АН=КД = (АД-НК)/2= (8-2)/2=3 части, АВ=АМ+ВМ=4+1=5 частей
Треугольник АВН, ВН=корень(АВ в квадрате - АН в квадрате) = корень(25-9) = 4 части
ВН=4 части = диаметру вписанной окружности = 2 х 12 =24
1 часть = 24/4=6
АВ = 5 х 6 = 30 =СД
ВС = 2 х 6 = 12
АД = 8 х 6 =48
Периметр = 30+30+12+48=120
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть катети прямокутного трикутника гіпотенуза якого дорівнює 10 см а косинус одного з гострих кутів дорівнює 0, 8
Прямые, соединяющие центр вписанной окружности с концами боковой стороны - это биссектрисы внутренних односторонних углов при параллельных основаниях и секущей боковой стороне. Сумма таких углов 180 градусов, сумма половин - 90 градусов, то есть эти прямые перпендикулярны. Поэтому радиус, проведенный в точку касания этой боковой стороны, является высотой к гипотенузе в прямоугольном треугольнике. Если меньший отрезок (на который точка касания делит гипотенузу-боковую сторону) принять за х, а больший за 4*х, то высота - среднее геометрическое этих отрезков.
Действительно, высота делит прямоугольный треугольник на два подобных между собой прямоугольных треугольника - и подобных исходному, конечно - по признаку равенства углов, поэтому
4*х/12 = 12/x;
(4*х)*х = 12^2 = 144; x^2 = 36; x = 6
Боковая сторона равна 30, а периметр 120
(сумма боковых сторон равна сумме оснований)