Пусть треугольник ABC : <C =90° ; <B=<C =45° (AC =BC треугольник равнобедренный ) ; AB =18 см ; вписанный прямоугольник MNEF ( M∈[AC] , N∈ [BC] , E , F ∈ [ AB] ) .
a) MF : MN = 2 : 5 . MF =2x ; MN =5x ; P =2(MF+MN) =2(2x+5x) =14x. В ΔAFM : AF =MF =2x ; В ΔBEN : BE =NE =MF =2x ; AF +FE +EB =18 см ; * * *FE=MN =5x * * * 2x +5x+2x =18⇒ x =2(см) P =14x =14*2 см =28 см.
б) MF : MN = 5 : 2. MF =5x ; MN =2x ; P =2(MF+MN) =2(5x+2x) =14x. 5x +2x+5x =18⇒12x =18⇔x=1,5 (см) . P =14x=14*1,5 см = 21 см .
ответ : 28 см , 21 см .
oyunabaduraeva
10.02.2020
1) две прямые на плоскости называются параллельными , если они не пересекаются . два отрезка называются параллельными , если они лежат на параллельных прямых . 2) прямая c называется секущей по отношению к прямым a и b , если она пересекает их в двух точках . 3)если при пересечении двух прямых секущей на крест лежащие углы равны, то прямые параллельны . 4)если при пересечении двух прямых секущей на соответственные углы равны, то прямые параллельны . 5)если при пересечении двух прямых секущей сумма односторонних углов равна 180 градусов , то прямые параллельны . 6)на практике параллельные прямые проводятся с чертёжного угольника и линейки , рейсшины , мелка . 7) утверждения , которые принимаются в качестве исходных положений , на основе которых доказываются далее теоремы , называются аксиомами . пример : через любые две точки проходит прямая , и притом только одна . 8)через точку , не лежащую на данной прямой проходит только одна прямая параллельная данной . 9)
AB =18 см ;
вписанный прямоугольник MNEF ( M∈[AC] , N∈ [BC] , E , F ∈ [ AB] ) .
a) MF : MN = 2 : 5 . MF =2x ; MN =5x ; P =2(MF+MN) =2(2x+5x) =14x.
В ΔAFM : AF =MF =2x ;
В ΔBEN : BE =NE =MF =2x ;
AF +FE +EB =18 см ; * * *FE=MN =5x * * *
2x +5x+2x =18⇒ x =2(см)
P =14x =14*2 см =28 см.
б) MF : MN = 5 : 2. MF =5x ; MN =2x ; P =2(MF+MN) =2(5x+2x) =14x.
5x +2x+5x =18⇒12x =18⇔x=1,5 (см) .
P =14x=14*1,5 см = 21 см .
ответ : 28 см , 21 см .