Все рёбра треугольной пирамиды равны. Найти угол наклона:
а) Бокового ребра к плоскости основы.
б) боковой грани к площине основы/
Объяснение:
АВСМ -пирамида, пусть ребро равно х.
a)Угол наклона бокового ребра к плоскости основания это ∠МАО.
Т.к АВ=ВС=АС, то высота проецируется в центр основания О , точку пересечения медиан.Тогда АО=2/3*АН, где АН медиана, ВН=х/2 .
Из ΔАВН-прямоугольного, АН=√(х²-х²/4)=(х√3)/2. Тогда АО=( х√3)/3.
ΔАОМ-прямоугольный, cos∠МАО=АО/АМ , cos∠МАО=( х√3)/3:х=√3/3,
∠МАО=arccos(√3/3) .
ОМ=√(х²-( х√3)/3)² )=(х√6)/3
б)В равностороннем ΔАВС , медиана АН является высотой . Тогда МН⊥ВС по т. о трех перпендикулярах и ∠АНМ-линейный угол между боковой гранью и плоскостью основания.
ОН=1/3*АН , ОН=(х√3)/6.
ΔОНМ-прямоугольный ,tg∠AHM=MO/OH , tg∠AHM=2√2 , ∠AHM=arctg(2√2).
1) Через пересекающиеся прямые можно провести плоскость. ⇒ а и b лежат в одной плоскости. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. А1В1||А2В2.
∆ А1КВ1~А2КВ2, т.к. углы при пересечении параллельных оснований секущими а и b равны, и угол К - общий.
Из подобия следует: КВ1:КВ2=А1В1:А2В2=3/4
Примем В1В2=х, тогда КВ2=14+х
14:(14+х)=3:4
56=42+3х ⇒ ⇒
см
2) Медианы треугольника пересекаются, параллельны плоскости альфа, следовательно, плоскость треугольника, в которой они лежат, параллельна плоскости альфа.
СЕ и ВF параллельны ( дано), следовательно, через них можно провести плоскость, притом только одну.
Если две параллельные плоскости пересечены третьей,
то линии их пересечения параллельны.⇒ СВ||EF.
Четырехугольник, у которого противоположные стороны попарно параллельны, является параллелограммом, ч.т.д.
3) Все грани параллелепипеда ABCDA1B1C1D1 - квадраты со стороной a.⇒ этот параллелепипед - куб.
DA1В1С - прямоугольник, т.к. по т. о 3-х перпендикулярах диагонали А1D и В1С параллельных граней перпендикулярны ребрам А1В1 и DC . Проведем через середины АD и ВC прямые КМ и ОН параллельно А1D и В1C, соединим К и О, М и Н. Пересекающиеся КО и КА параллельны пересекающимся АА1 и АD. ⇒
Плоскость сечения МКОН параллельна плоскости DA1B1C ⇒ . Стороны сечения КМНО пересекают ребра АА1, ВВ1, ВС и AD в их середине. КМНО - прямоугольник.
В параллельных гранях диагонали А1D=B1C=a:sin45°=a√2
КМ и ОН –– средние линии ∆ АА1D и ВВ1С соответственно и равны половине А1D- равны
КО=МН=АВ=а
Р (КМНО=2(МН+КМ)=2a+2•(a√2/2)=a•(2+√2)
Поделитесь своими знаниями, ответьте на вопрос:
Биссектрисы углов B и C треугольника ABC пересекаются в точке K. Найдите < ВКС, если < В = 28˚, а < С = 84 ˚.
Тогда с теоремы о сумме углов треугольника:
∠A + ∠B + ∠C = 180˚ ⇒
∠A = 180˚ - ∠B - ∠C = 180˚ - 28˚ - 84˚ = 68˚.
Так, как BS и CR - биссектрисы, то они делят:
∠B и ∠C пополам, из этого:
∠SBC = =
∠RCB = =
Тогда, с теоремы, о сумме углов треугольника:
∠SBC + ∠RCB + ∠ВКС = 180˚ ⇒
∠ВКС = 180˚ - ∠SBC - ∠RCB = 180˚ - 14˚ - 42˚ = 124˚.
ответ: 124˚.
Рисунок: