1. Сторона треугольника равна 6 см, а высота, проведенная к ней, в два раза больше стороны.
Объяснение: Сторона = 6 см
Высота 6*2 = 12 (В два раза больше)
Площадь треугольника = Произведению основания на высоту и делённое на два.
Получаем: (6*12)/2 = 36
2. Катеты прямоугольного треугольника равны 3 см и 4 см. Найдите гипотенузу и площадь треугольника.
Объяснение: c²=a²+b²
c²=9+16
c²=25
c=5 см.
Sтреугольника = (3*4)/2 = 6 см.
5. Выписать формулы для нахождения площади
прямоугольника, треугольника , параллелограмма, ромба,
квадрата, трапеции.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Из точки А проведена к плоскости α наклонная АВ=25. Проекцией этой наклонной является отрезок ВС. Найти ВС, если АС=20.
2)площадь трапеции=(а+в)*H/2, в равнобедренной трапеции углы при основании равны
3)Дан прямоугольный треугольник АВС,где АВ и АС-катеты, ВС-гипотенуза,AH-высота,а АА1-медиана. S=1/2BC*AH 1/2ВС=АА1,следовательно,S=AA1*BH=24*25=600cм2.
4)
угол DAK = AKB как углы, образованные сечением прямой двух параллельных прямых. т.к АК - биссектрисса BAD, то BAK = AKB и треугольник BAK - равносторонний. в случае, если АК и DM пересекаются (рисунок) BC = 3/2 * BK = 3/2 * 20 = 30. Периметр равен 100 см В случае, если AK и DM не пересекаются (рисунок делаем самостоятельно) BC = 3 BK = 60. Периметр равен 160 см