Находим координаты точки М - середины стороны ВС: М((3+2)/2=2,5; (4+1)/2=2,50 = (2,5; 2,5). Уравнение медианы АМ : (Х-Ха)/(Хм-Ха) = (У-Уа)/(Ум-Уа). Подставив координаты точек, получаем каноническое уравнение:: , или приведя к целым знаменателям Приведя к общему знаменателю, получаем обще уравнение медианы АМ: Х - 9У + 20 = 0. Или в виде уравнения с коэффициентом: у = (1/9)х + (20/9).
Высота АД перпендикулярна АС, поэтому составляем уравнение стороны АС: АС: (х+2)/4 = (у-2)/-1, АС: х+4у-6=0, АС: у = -(1/4)х+(6/4). Коэффициент а высоты ВД равен -1/(-(1/4)) = 4. Подставим координаты точки В: 4= 4*3+С, отсюда С = 4-12 =-8. Уравнение высоты ВД: у = 4х-8.
Для определения углов нужны длины сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = √29 ≈ 5.385164807, BC = √((Хc-Хв)²+(Ус-Ув)²) = √10 ≈ 3.16227766, AC = √((Хc-Хa)²+(Ус-Уa)²) = √17 ≈ 4.123105626.
cos C= (АC²+ВС²-АВ²)/(2*АC*ВС) = -0.076696 (по теореме косинусов). Угол С равен 1.647568 радиан или 94.39871 градусов.
Olgachalova111
15.03.2021
Пусть, для простоты восприятия, трапеция будет прямоугольной, как это показано на рисунке, хотя на конечный ответ это не повлияет. Обозначим высоту трапеции ВЕ=Н, а высоту треугольника ВСМ ВР=h. Площадь трапеции: S=Н·(АД+ВС)/2=Н·(2+4)/2=3Н. Площадь тр-ка ВСМ: S(ВСМ)=ВС·ВР/2=2h/2=h. S(ВСМ):S(АМСД)=1:3=1x:3x, S(ВСМ)+S(АМСД)=1x+3x=4x=S ⇒ S(ВСМ)=S/4. h=3H/4 ⇒ h:H=3:4. Треугольники АВЕ и МВР подобны по трём углам, значит ВР/ВЕ=МР/АЕ, МР=ВР·АЕ/ВЕ=h·AE/H=3АЕ/4. АЕ=АД-ЕД=АД-ВС=4-2=2. МР=3·2/4=1.5. МТ=МР+РТ=МР+ВС=1.5+2=3.5 - это ответ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В треугольниках OBC и OB1C1 стороны BC и B1C1 параллельны. Луч C1E — биссектриса ∠B1C1D, ∠OCB=76∘. Найдите угол OC1E.
128°
Объяснение:
углы осв и о1с1в1 равны,так как вс//в1с1
угол в1с1д равен 180°-76°=104°
биссектриса делит угол пополам(по свойству биссектрисы)
угол в1с1е=углу ес1д=104/2=52°
угол ос1е= угол ос1в1+ угол в1с1е=76+52=128°