Дано:
ABDC - параллелограмм
AD и ВС - Диагонали
ВЕ=ЕС
АЕ=ЕD
Доказать:АВ||СD
Доказательство:
1)Рассмотрим треугольники АЕВ и EDC
Они равны по двум сторонам и углу между ними
ВЕ=ЕС
ВЕ=ЕСАЕ=ЕD
Угол АЕВ= углу DEC (Т.к вертикальные углы равны)
2)Если треугольники равны, то чтобы доказать, что прямые параллельны, воспользуемся теоремой:
Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.
Тогда <АВЕ=<DCE (Т.к треугольники равны), что говорит, что АВ||СD
Что и требовалось доказать
Поделитесь своими знаниями, ответьте на вопрос:
Среднесуточная температура воздуха
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.