cvetprint
?>

Даны параллельные прямые a и b, точка A (на одной из прямых) и отрезок n. Найди точку на другой прямой на расстоянии, равном длине данного отрезка n от данной точки A. Даны следующие возможные шаги построения: 1. провести прямую. 2. Провести луч. 3. Провести отрезок. 4. Провести окружность с данным центром и радиусом. 5. На данном луче от его начала отложить отрезок, равный данному. 6. Построить перпендикулярную прямую. Напиши номера шагов, которые необходимы для решения задания (запиши номера без запятых, точек или пустых мест): . Сколько решений может иметь это задание (возможно несколько вариантов ответа)? 3 1 0 2

Геометрия

Ответы

Tipan77

Ребро правильного тетраэдра DABC равно а. 

Постройте сечение тетраэдра, проходящее через середины ребер DA и AB параллельно ребру  BC, и найдите площадь этого сечения.

––––––––––––––––––––––––

Тетраэдр называется правильным, если все его грани — равносторонние треугольники.

Сечение пройдет через середины ребер АD и АВ по линии D1B1– это средняя линия ∆ АВD.

Сечение, параллельное ВС - проходит через В1С1 – среднюю линию ∆ АВС. 

Каждая сторона построенного сечения - средняя линия треугольника. ограничивающего грань тетраэдра, и по свойству средней линии  равна а/2, 

т.е. проведенное через середины ребер сечение - правильный треугольник со сторонами, равными а/2

Его площадь найдем по формуле площади равностороннего треугольника:

    S=(a²√3):4  

S=(a/2)²√3):4=(a²√3):16

_______________

Вариант решения:

Треугольник. получившийся в сечении, подобен треугольнику  ВСD с коэффициентом подобия

 k=( а/2):а=1/2

Отношение площадей подобных фигур равно квадрату коэффициента их подобия. 

S1:S=k²=1/4

S ∆ CDB=(a²√3):4

S сечения в 4 раза меньше и равно (a²√3):16


Ребро правильного тетраэдра dabc равно а. постройте сечение тетраэдра, проходящее через середины реб
buhh20104519

Ребро правильного тетраэдра DABC равно а. 

Постройте сечение тетраэдра, проходящее через середины ребер DA и AB параллельно ребру  BC, и найдите площадь этого сечения.

––––––––––––––––––––––––

Тетраэдр называется правильным, если все его грани — равносторонние треугольники.

Сечение пройдет через середины ребер АD и АВ по линии D1B1– это средняя линия ∆ АВD.

Сечение, параллельное ВС - проходит через В1С1 – среднюю линию ∆ АВС. 

Каждая сторона построенного сечения - средняя линия треугольника. ограничивающего грань тетраэдра, и по свойству средней линии  равна а/2, 

т.е. проведенное через середины ребер сечение - правильный треугольник со сторонами, равными а/2

Его площадь найдем по формуле площади равностороннего треугольника:

    S=(a²√3):4  

S=(a/2)²√3):4=(a²√3):16

_______________

Вариант решения:

Треугольник. получившийся в сечении, подобен треугольнику  ВСD с коэффициентом подобия

 k=( а/2):а=1/2

Отношение площадей подобных фигур равно квадрату коэффициента их подобия. 

S1:S=k²=1/4

S ∆ CDB=(a²√3):4

S сечения в 4 раза меньше и равно (a²√3):16


Ребро правильного тетраэдра dabc равно а. постройте сечение тетраэдра, проходящее через середины реб

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны параллельные прямые a и b, точка A (на одной из прямых) и отрезок n. Найди точку на другой прямой на расстоянии, равном длине данного отрезка n от данной точки A. Даны следующие возможные шаги построения: 1. провести прямую. 2. Провести луч. 3. Провести отрезок. 4. Провести окружность с данным центром и радиусом. 5. На данном луче от его начала отложить отрезок, равный данному. 6. Построить перпендикулярную прямую. Напиши номера шагов, которые необходимы для решения задания (запиши номера без запятых, точек или пустых мест): . Сколько решений может иметь это задание (возможно несколько вариантов ответа)? 3 1 0 2
Ваше имя (никнейм)*
Email*
Комментарий*