1.Центральным углом называется угол, вершиной
которого является центр круга, а стороны его пересекают окружность.
2.Градусная мера вписанного угла равна половине дуги окружности, на которую угол опирается.
3. Вписанный угол, который опирается на диаметр, равен 90 градусов, т.е. прямой.
4. Круг называется вписанным около четырёхугольника, если он проходит через все его четыре вершины.
5. В четырёхугольник, у которого равны суммы противоположных сторон, можно вписать окружность.
6. Около четырёхугольника можно описать окружность, если суммы противоположных углов четырёхугольника равны. Около четырёхугольника с углами 112,54,78 и 46 градусов нельзя описать окружность, т.к. из них нельзя составить сумму двух углов, равную сумме двух других углов.
7. Если градусная мера дуги равна 80 градусам, то центральный угол, опирающийся на эту дугу, равен тоже 80 градусам.
8. Градусная мера дуг, на которые опираются стороны вписанного равностороннего треугольника, равна 120 градусов, т.к. 360:3=120.
9. Такой четырёхугольник нельзя вписать в круг, т.к. сумма противоположных углов должна быть равна 180 градусов, а среди указанных углов нет пары углов, дающих в сумме 180 градусов.
Объяснение:
Проведите из центра окружности О два произвольных радиуса ОА и ОВ. Угол АОВ - центральный угол окружности и равен дуге, на которую опирается, т.е. дуге АВ.
Выберете на окружности точку М и проведите две хорды МК и МД.
Угол КМД - вписанный угол окружности и равен половине дуги КД.
На стороне AB остроугольного треугольника ABC(CB не равно AC) как на диаметре построена полуокружность пересекающая высотку cs в точке N, CS = 20, NS = 17, H - точка пересечения высот треугольника ABC. Найдите CH
Объяснение:
1.) Тк Н- точка пересечения высот CS и ВН Δ ABC, то точка М лежит на окружности, для которой АВ –диаметр , т.к ∠ВМА=90°.
2.) ΔSАС ∼ ΔMHC по двум углам ( общему ∠С, ∠НМС=∠АSC=90°), поэтому сходственные стороны пропорциональны
или АС*МС=СН*SC .
3.) Достроим SN ( часть перпендикуляра СS) до пересечения с окружностью . Хорда КN ⊥AB, значит КS=SN=17. Поэтому
КС= SC +KS =20+17=37 , NC= SC-SN=20-17=3 . По теореме о секущих , проведенных из точки С : NC*KC=MC*AC , 3*37=MC*AC .
4.) АС*МС=СН*SC , 3*37=СН*20 , СН=5,55
Поделитесь своими знаниями, ответьте на вопрос:
Это 7 ! 1) найдите углы треугольника abc, если угол а на 80 градусов меньше угла в и в два раза меньше угла с. 2) в прямоугольном треугольника авс угол с=90 градусов. биссектриссы cd и be пересекаются в точке о, угол аос=105 градусов. найдите острые углы треугольника. 3) в прямоугольном трнугольнике dce с прямым углом c проведена биссектрисса ef, fc=13см. найдите расстояние от точки f до прямой de.
x+(x+80)+0,5x=180
2,5x+80=180
2,5x=100
x=100/2,5
x=40
∠А=40°
2)∠В=40°+80°=120°
3)∠C=40°×0,5=20°.
2)Найдем ∠АСО, т.к. СД-биссектриса,то она делит ∠С пополам,
значит ∠АСО=90/2=45°
∠САО=180-(105+45)=30°,т.к АЕ-биссектриса,то ∠А=60°
∠В=90-60=30°,т.к сумма острых углов в прямоугольном треугольнике равна 90°
ответ: ∠А=60°,∠В=30°
3)Пусть перпендикуляр FР - расстояние от точки F до прямой DE. Рассмотрим ΔЕFС и ΔЕFР. Эти треугольники прямоугольные. Они равны, т.к. у них общая гипотенуза ЕF и равные острые углы:
∠СЕF = ∠РЕF.
Из равенства этих треугольников следует и равенство катетов, лежащих против равных углов: РF = СF = 13см