rakitinat8
?>

Надо прислать фото тетради. Сделать 1 упражнение с координатами

Геометрия

Ответы

strelnikov-aa

7 см

Правильное условие:

В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.

Объяснение:

Серединные перпендикуляры к сторонам треугольника  пересекаются в одной точке — центре описанной окружности.

Значит МА=МВ=МС=R = 14 см.

Тогда ΔАМВ - равнобедренный с основанием АВ  и ∠МАВ=∠МВА=30°.

Расстоянием от т.М до стороны АВ есть высота равнобедренного  ΔАМВ.

Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.

Катет МК = sin∠MВK * MВ.

Т.к. ∠МВК = ∠АВМ = 30°   и МА = 14 см, то

МК = sin 30° * 14 = 7 (см)


Выберите правильный ответ. В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC
stasyan

S(amb)=S(bmc) => S(amb = 1/2 S(abc)

Ak - медиана треугольника AMB, так как BK=KM

S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)

Проведем ML параллельно AP

ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC

KP - средняя линия BMP=>PL=PB

PL=LC; PL=PB =>PL=LC=PB

S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6

S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12

S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5Медиана BM и биссектриса AP треугольника АВС пересекаются в точке К, длина стороны АС втрое больше д 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Надо прислать фото тетради. Сделать 1 упражнение с координатами
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

frsergeysavenok
Андреевнатест707
ktatarinova
Chistov9721209
shumilovs7252
bk4552018345
svetavalera
dima-pashkovec
dentob72
alekbur
stertumasova29
Pavlov447
Бегун-Марина
mel9152480522
info9