gbelihina
?>

Визначте вид трикутника ABC, якщо - A = 32°, B =115°, С =33°.​

Геометрия

Ответы

edubenskaya
Значит так. Чертим прямоугольный треугольник. 
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
 x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5
Впрямоугольном треугольнике abc с прямым углом c проведена высота ch. чему равен отрезок bh, если ac
YuREVICh646

такого треугольника не существует

или 60 см^2.

Объяснение:

Треугольника с заданными сторонами не существует.

13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.

Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:

S = √p•(p-a)•(p-b)•(p-c).

p = (10+13+13):2 = 18 (см),

S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)

Ещё одним может быть нахождение по формуле

S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.

(S = 1/2•10•12 = 60 (см^2) ).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Визначте вид трикутника ABC, якщо - A = 32°, B =115°, С =33°.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

olegtarasov1965
mila010982
Shalito
Timurr007
ams-sim
sklad
Николаев
Malenyuk
Сергеевич1907
matterfixed343
Natakarpova75732
pechatlogo4
mkovanov
Pervosha
zelreiki