В прямой треугольной призме стороны основания соответственно равны 25дм, 29дм, 36дм, а её боковое ребро=50дм. Найти объём данной призмы и её полную поверхность
Дано: правильная четырехугольная призма, => основание призмы - квадрат S квадрата = а², а - сторона квадрата D=25 см H=15 см
1. прямоугольный треугольник: гипотенуза D=25 см - диагональ правильной четырехугольной призмы катет Н = 15 см - высота правильной четырехугольной призмы катет d - диагональ основания правильной четырехугольной призмы, найти по теореме Пифагора
2. прямоугольный треугольник: катет а= катету b гипотенуза d (диагональ квадрата) по теореме Пифагора: a²+a³=d³, 2a²=d² 2a²=400 a²=200, => S квадрата =200 см²
ответ: площадь основания правильной четырехугольной призмы =200 см²
borisova-valeriya
08.08.2021
1. Дано: угол 2 = угол 1 + 34°; Найти: угол 3. Решение: Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1. Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение: угол 1 + угол 1 + 34° = 180°. Отсюда угол 1 = 73°. Значит, угол 3 = 73°. ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°. Найти: угол А, угол В. Рисунок к задаче - в приложении к ответу. Решение: Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B. Т.к. угол DCB = 37°, то угол B = 37°. Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB. Угол А = 180° - 90° - 37° = 53°. ответ: угол А = 53°, угол В = 37°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В прямой треугольной призме стороны основания соответственно равны 25дм, 29дм, 36дм, а её боковое ребро=50дм. Найти объём данной призмы и её полную поверхность
i don't know