определение 1. окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). в этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником.
теорема 1. если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180°.
доказательство. угол abc является вписанным углом, опирающимся на дугу adc (рис.1). поэтому величина угла abc равна половине угловой величины дуги adc. угол adc является вписанным углом, опирающимся на дугу abc. поэтому величина угла adc равна половине угловой величины дуги abc. отсюда вытекает, что сумма величин углов abc и adc равна половине угловой величины дуги, со всей окружностью, т.е. равна 180°.
если рассмотреть углы bcd и bad, то рассуждение будет аналогичным.
теорема 1 доказана.
arturo95
20.08.2022
Тупым углом будет являться угол при вершине меньшего основания. Проводим ещё одну высоту. Она будет равна первой высоте, параллельна ей и отсекать вместе с ней на большем основании три отрезка, два из которых равны по 6 см (исходя из равенства треугольников, которые равны по катета и гипотенузе), а третий отрезок - центральный, будет равен меньшему основанию, т.к. является противоположной стороной прямоугольника. Далее находим длину большего основания. Оно равно 6см+15см= 21см. Меньшее основание равно 21см-6см-6см = 9 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
8. На малюнку точка 0центр кола, КУТ AOK = 38°. Знайдіть КУТ 0КВ.ВВідповідь
ответ:
объяснение:
определение 1. окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). в этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником.
теорема 1. если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180°.
доказательство. угол abc является вписанным углом, опирающимся на дугу adc (рис.1). поэтому величина угла abc равна половине угловой величины дуги adc. угол adc является вписанным углом, опирающимся на дугу abc. поэтому величина угла adc равна половине угловой величины дуги abc. отсюда вытекает, что сумма величин углов abc и adc равна половине угловой величины дуги, со всей окружностью, т.е. равна 180°.
если рассмотреть углы bcd и bad, то рассуждение будет аналогичным.
теорема 1 доказана.