ответ: Не всякая фигура имеет центр симметрии.
Объяснение:
Центральная симметрия относительно точки О - это такое преобразование пространства, при котором каждая точка А отображается в точку А' такую, что АО = A'O.
Фигура называется симметричной относительно точки О, если для каждой точки фигуры точка, симметричная ей относительно точки О, так же принадлежит этой фигуре.
Примеры фигур, имеющих центр симметрии:
отрезок, квадрат, круг, параллелограмм, правильный многоугольник с четным количеством сторон.
Примеры фигур, не имеющих центра симметрии:
треугольник, многоугольник с нечетным количеством сторон, трапеция.
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике ABC на стороне AC отмечена точка D, такая, что AB = BD = DC. Отрезок DF – медиана треугольника BDC.Найти угол FDC, если
∠FDC = 55°.
Объяснение:
Опустим из точки B отрезок BD, чтобы показать равенство сторон AB, BD и DC. Этот отрезок разбил треугольник ABC на два других.
1. Рассмотрим ΔABD:
Т.к. по условию AB = BD ⇒ ΔABD - равнобедренный.
В равнобедренном треугольнике углы при основании равны.
⇒ ∠BAD = ∠BDA = 70°.
2. Рассмотрим ΔBDC:
Т.к. по условию BD = DC ⇒ ΔBCD - равнобедренный.
Медиана, проведённая к основанию равнобедренного треугольника, является и высотой, и биссектрисой.
⇒ медиана DF - биссектриса ∠BDC.
3. Рассмотрим равнобедренные ΔABD и ΔDBC:
∠BDA + ∠BDC = 180°, т.к. они смежные ⇒ ∠BDC = 180° - 70° = 110°.
Т.к. отрезок DF - биссектриса угла BDC, то ∠BDF = ∠FDC = 55°.