См. чертеж.
Прямые симметричны относительно ОС, поскольку усеченные круговые сегменты (один из них - СЕВ, ограничен дугой СВ) равны по площади, и оба равны четверти круга с вырезанным прямоугольным треугольником (справа это ОСЕ), следовательно, прямоугольные треугольники равны по площади, один катет у них общий, => они равны. Это - очевидно, но надо было это отметить.
Осталось понять, что 2*Scoe = Sceb = Socb - Scoe; :)
3*R*a/2 = pi*R^2/4;
ОЕ = а = pi*R/6; BE = R - a = R*(1 - pi/6);
Две прямые поделят диаметр на три отрезка
R*(1 - pi/6); pi*R/3; R*(1 - pi/6); ну, отсюда пропорция
(1 - pi/6) : (pi/3) : (1 - pi/6)
Поделитесь своими знаниями, ответьте на вопрос:
ГЕОМЕТРИЯ 7 КЛАСС. Признаки параллельности двух прямых. МОДЕРАТОРЫ НЕ УДАЛЯЙТЕ Я ЖЕ ПО Я ЗНАЮ, ЧТО ДЕЛАЮ) P.S. если кто знает, что это за учебник напишите ГЕОМЕТРИЯ 7 КЛАСС. Признаки параллельности двух прямых. МОДЕРАТОРЫ НЕ УДАЛЯЙТЕ
Надо вычислить расстояние от центра до хорды (все равно какой). Ясно, что треугольник, вершины которого - точки пересечения хорд - правильный. Ясно и то, что центр этого треугольника совпадает с центром окружности. Но - заодно - это центр вписанной в этот треугольник окружности. В правильном треугольнике радиус вписанной окружности равен трети высоты, то есть корень(3)/6 от стороны, а сторона ЭТОГО треугольника а/3.
Итак, есть хорда длины а, отстоящая от центра на расстояние а*корень(3)/18.
R^2 = (a/2)^2 + (а*корень(3)/18)^2 = a^2*7/27; R = a*корень(21)/9