1)
Диагонали трапеции - пересекаются . Поскольку они параллельны плоскости α, следовательно, плоскость, в которой они лежат, параллельна плоскости α, и все стороны трапеции также параллельны плоскости α.
Параллельные прямые ЕА и ВФ задают плоскость. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. ⇒ АВ||ЕФ, АЕ||ВФ по условию ⇒ в четырехугольнике АВФЕ противоположные стороны параллельны. АВФЕ - параллелограмм.
2)
Данная без нужного рисунка задача вполне может остаться без решения.
Прямые, пересекающие параллельные плоскости, могут:
пересекаться, быть параллельными или скрещивающимися.
Через две параллельные или через две пересекающиеся прямые, можно провести плоскость, притом только одну.
Если две параллельные плоскости (α и β ) пересечены третьей, то линии их пересечения параллельны. И тогда на рисунке в любой проекции они будут параллельны (или совпадут). На данном рисунке АС и DB не параллельны. Следовательно, точки А, С, В и Д не лежат в одной плоскости, а прямые a и b не пересекаются и не параллельны. Они - скрещивающиеся.
3)
Так как все грани параллелепипеда прямоугольники, наклонные В1А и С1Д перпендикулярны АД, и АДС1В1 - прямоугольник.
Пусть точка М - середина СД.
Проведем МК║ДС1, МН║АД и КЕ║||В1С1.
НМ=КЕ ( параллельны и равны равным сторонам равных граней). КМ=КН, параллельны диагоналям параллельных граней и делят ребра СС1 и ВВ1 пополам.
В прямоугольном треугольнике КСМ стороны СМ=8:2=4, КС=6:2=3, треугольник КСМ - египетский и КМ=5
Периметр - сумма длин всех сторон многоугольника.
Р сечения =2•(НМ+КМ)=2•(4+5)=18 (ед. длины)
Поделитесь своими знаниями, ответьте на вопрос:
Серединный перпендикуляр диагонали прямоугольника об-разует с его большей стороной угол 60°. Отрезок этой пря-мой, принадлежащий прямоугольнику, равен 12 см. Найдитебольшую сторону прямоугольника.
Находим внутренний угол В треугольника АВС:
<B=180-78=102°
Это наибольший угол треугольника (на углы А и С приходится всего 180-102=78°). Против большего угла лежит большая сторона треугольника. Значит, искомые углы ВОА и ВОС.
Поскольку ВО - биссектриса, то угол ОВA равен:
<OBA= 102:2=51°
Зная внешний угол при вершине А, находим внутренний угол треугольника:
<A=180-150=30°
Зная, что сумма углов треугольника равна 180°, находим угол ВОА в треугольнике АВО:
<BOA=180-<OBA-<A=180-51-30=99°
<BOC=<AOC-<BOA=180-99=81°