4
Объяснение:тр.Вос~тр.АОС по 1признаку:
тк1.угол ВОС = уголАОД т. вертикальных углов
2.угол ВСО=угол ОАС как накрест лежашие приВС ll АД и секущейАС отсюда ОД: ОВ =АД :ВС значит 4:3 =АД :3 следовательно АД =4
1)нет
2)да
3)нет
4)бессектриса
5)равнобедренный
6)хз
7)Окружность называется вписанной в треугольник, если она касается через все его сторон.
Теорема.
Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Доказательство.
Пусть ABC данный, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Δ AEO = Δ AOD по гипотенузе и катету (EO = OD – как радиус, AO – общая). Из равенства треугольников следует, что ∠ OAD = ∠ OAE. Значит AO биссектриса угла EAD. Точно также доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.
7) хз
Обозначим :
Н - высота пирамиды
h - высота основания пирамиды
r -радиус окружности, вписанной в основание
а - сторона основания
Решение
а) высота пирамиды Н = L· sinβ
б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.
в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =
= 2√3 · L·cosβ
г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.
Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β
д) Площадь боковой поверхности пирамиды
Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ
e) площадь полной поверхности пирамиды:
Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =
= 3√3 · L² · cosβ · (cosβ + 1)
Подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос:
В трапеции ABCD, BC и AD – основания. ВC=3, DO:OB=4:3, О – точка пересечения диагоналей. Чему равно. AD ?
Объяснение:
В трапеции ABCD cтороны BO и OD представим как 3х и 4хТреугольники BOC и AOD подобны по двум углам.Составляем пропорцию BC/AD = BO/OD, то есть..3/AD=3x/4x выражаем неизвестную сторону.AD=12x/3xAD=4 см