МР - высота т.е. он перпендикулярна основанию, следовательно угол МРО=90
МО - диогональ явл биссектрисой значит она делит угол пополам : РМО = ОМН.
Следовательно тругольник РОМ - равно бедренный: угол Р=90гр, углы М = О = 45гр. и МР = РО = 9м.
ПРовелем еще одну высоту ОТ = 9м, тогда получится квадрат МТОР , со сторонами 9м.
ТН=18-9=9м
Треугольники МРО = МОТ = ОТМ, значит все углы равны, значит угол МОТ = 45гр,
Теперь мы можем найти угол КОН = 45+45+45 =135гр.
В Паралелограмме напротив лежащие угла равны, следовательно
углы КМН = КОН = 135гр.
УГЛы МКО = МНО = 360 - 2*135 = 90:2 = 45гр
Вот а если чесно к концу я поняла что это не верно, подумай может после какоко нибудь моего действия поймешь где ошибка
Задача 6
В ΔАВС , АВ=ВС, АЕ -биссектриса, Е∈ВС. Найти Р( АВС), если ВС-АС=8 и ВЕ:ЕС=3:2.
Решение.
Пусть одна часть х. Тогда ВЕ=3х, ЕС=2х ⇒ ВС=5х ⇒ АВ=5х , т.к треугольник равнобедренный.
По т. о биссектрисе треугольника , тогда
⇒ AC=
.
По условию ВС-АС=8 , поэтому 5х- = 8 или
=8 или х=4,8.
ВС=5*4,8=24 , АВ=24 , АС=.
Р=24+24+16=64.
Задача 8
Стороны треугольника относятся как 2:3:3 . Найти периметр треугольника , если основание на 5 единиц меньше боковой стороны.
Решение .
Дан ΔАВС. АВ=ВС . Пусть одна часть х. Тогда АВ=ВС=3х, АС=2х .
По условию АС меньше АВ на 5, т.е АВ-АС=5.
Получим 3х-2х=5 или х=5 . Тогда АВ=ВС=3*5=15, АС=2*5=10 .
Р=15+15+10=40.
Задача 9
Угол при вершине равнобедренного треугольника равен 120°. , высота , опущенная на основание, равна 6 .Найти периметр треугольника .
Решение .
Дан ΔАВС , АВ=ВС ,ВН⊥АС , ∠АВС=120°.
1) Высота равнобедренного треугольника является биссектрисой ⇒∠АВН=60° .
2) ΔАВН -прямоугольный , по свойству углов ∠А=90°-60°=30°.
Против угла в 30° , лежит катет равный половине гипотенузы , т.е ВН=1/2*АВ ⇒ АВ=12 ⇒ВС=12, т.к треугольник равнобедренный.
По т. Пифагора АН²=АВ²-ВН² или АН²=12²-6² или АН=√18*6=6√3.
3) Высота равнобедренного ΔАВС является медианой, значит АН=НС=6√3 ⇒АС =12√3.
4)Р=12√3+12+12=24+12√3.
Поделитесь своими знаниями, ответьте на вопрос:
У прямокутному трикутнику висота і медіана проведені з вершини прямого кута дорівнюють 24 і 26 знайти довжину бісектриси
4,8√26 ед.
Объяснение:
В прямоугольном треугольнике АВС
СМ = 26. Это медиана => АВ = 52.
В прямоугольном треугольнике ВСН по Пифагору:
МН =√(СМ² - СН²) = √(26² - 24²) = 10.
НВ = МВ - МН = 26 - 10 =16.
СВ = √(СН² + НВ²) = √(24² + 16²) = 8√13.
SinB = CH/CB = 24/(8√13) = 3√13/13.
АС = √(АВ² - СВ²) = √(2704-832) = 12√13.
СР - биссектриса => РВ/АР = СВ/АС. Или
РВ/(АВ-РВ) = 8√13/12√13 = 2/3. =>
РВ = 20,8.
В треугольнике СРВ угол РСВ = 45° (СР - биссектриса) и по теореме синусов: РВ/Sin45 = CP/SinB => CP = ВР·SinB/Sin45. =>
CP = 20,8· (3√13/13)/(√2/2) = 4,8√26 ед.