По одному из свойств касательных, проведённых из одной точки, отмеченные лучи являются биссектрисами углов ∠CBА и ∠EDC соответственно; если углы ∠АВС и ∠CDЕ являются равными, то и образованные биссектрисами углы тоже равны (∠ЕDО=∠ОDС=∠СВО=∠ОВА); получаем ΔDОВ с равными углами ∠ОDВ=∠DВО; что значит, что ΔDОВ - равнобедренный; DO=ВО;
Радиус, проведённый в точку касания
По свойству такого радиуса проведённый отрезок ОС будет перпендикулярен прямой ВD; те OC - высота ΔDOВ; по свойству равнобедренного треугольника OC является и медианой; значит, СD=СВ;
Отрезки касательных
По свойству касательных, проведённых из одной точки, отрезки ВС, ВА и DC, DЕ касательных попарно равны (те ВС=ВА и DC=DЕ); мы доказали, что DС=ВС; значит, ВС=ВА=DC=DЕ, ч.и.т.д.
№2
Обратные теоремы действенны - нужно доказать тоже самое, только в обратную сторону. Поэтому напишу вкратце.
Если АВ=ВС=CD=DЕ, то при ОС⊥ВD ОВ=ОD (св-ва р/б Δ); тогда при ∠ОDВ=∠DВО и биссектрисах DO и ВО (∠ЕDО=∠ОDС и ∠СВО=∠ОВА) ∠ЕDО=∠ОDС=∠СВО=∠ОВА, ч.и.т.д.
ekaterinkat
12.04.2020
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дана правильная треугольная пирамида со стороной основания 6 см и высотой боковой грани 10 см. Вычислите площадь боковой поверхности пирамиды
По одному из свойств касательных, проведённых из одной точки, отмеченные лучи являются биссектрисами углов ∠CBА и ∠EDC соответственно; если углы ∠АВС и ∠CDЕ являются равными, то и образованные биссектрисами углы тоже равны (∠ЕDО=∠ОDС=∠СВО=∠ОВА); получаем ΔDОВ с равными углами ∠ОDВ=∠DВО; что значит, что ΔDОВ - равнобедренный; DO=ВО;
Радиус, проведённый в точку касанияПо свойству такого радиуса проведённый отрезок ОС будет перпендикулярен прямой ВD; те OC - высота ΔDOВ; по свойству равнобедренного треугольника OC является и медианой; значит, СD=СВ;
Отрезки касательныхПо свойству касательных, проведённых из одной точки, отрезки ВС, ВА и DC, DЕ касательных попарно равны (те ВС=ВА и DC=DЕ); мы доказали, что DС=ВС; значит, ВС=ВА=DC=DЕ, ч.и.т.д.
№2Обратные теоремы действенны - нужно доказать тоже самое, только в обратную сторону. Поэтому напишу вкратце.
Если АВ=ВС=CD=DЕ, то при ОС⊥ВD ОВ=ОD (св-ва р/б Δ); тогда при ∠ОDВ=∠DВО и биссектрисах DO и ВО (∠ЕDО=∠ОDС и ∠СВО=∠ОВА) ∠ЕDО=∠ОDС=∠СВО=∠ОВА, ч.и.т.д.