Сделаем рисунок и обозначим вершины пирамиды АВСА1В1С1. Ребро ВВ1⊥АВС=1 см
Площадь боковой поверхности этой пирамиды - сумма площадей трех трапеций: двух прямоугольных и одной равнобедренной - той, что противолежит ребру ВВ1.
В основаниях пирамиды правильные треугольники - следовательно, длины средней линии всех трапеций равны 0,5•(3+5)=4 см
Площадь прямоугольных граней равна произведению их средней линии на длину высоты пирамиды, т.е. .
S (АВВ1А1)=S (ВВ1С1С)= 4•1=4 см²
Чтобы найти высоту грани АА1С1С, проведем в основаниях пирамиды высоты ВН и В1К и соединим К и Н.
Плоскость прямоугольной трапеции ВНКВ1 перпендикулярна плоскости оснований, т.к. содержит в себе отрезок ВВ1, перпендикулярный обоим основаниям.
Из К опустим высоту КТ.
КН по теореме о трех перпендикулярах перпендикулярна АС и является высотой трапеции АСС1А1.
В прямоугольном треугольнике КТН катет КТ=ВВ1=1см, катет НТ равен разности высот оснований пирамиды.
ВК=(3√3):2
BH=(5√3):2
ТН=2√3):2=√3 см
КН=√(КТ²+НТ²)=√4=2 см
S (АСС1А1)=4*2=8 см²
S(бок)=4+4+8=16 см²
Поделитесь своими знаниями, ответьте на вопрос:
Точка дотику вписаного у прямокутний трикутник кола ділить гіпотенузу на відрізки 8 і 12 см. Обчисліть площі вписаного і описаного навколо трикутника кругів.
ответ: Sопис=100πсм²; Sвпис=16πсм²
Объяснение:
1) центр описанной окружности в прямоугольном треугольнике – это середина гипотенузы, поэтому
R=(12+8)/2=20/2=10см
2) Обозначим вершины треугольника А В С а точки касания К М Е. Стороны треугольника являются касательными к вписанной окружности и отрезки касательных соединяясь в одной вершине равны от вершины до точки касания. Поэтому: МА=КА=12см;
ВК=ВН=8см, СМ=СЕ. Найдём радиус вписанной окружности через периметр треугольника, поэтому сначала нужно найти его стороны. Пусть МС и СЕ=х, тогда АС=12+х; ВС=8+х; АВ=12+8=20см.
Составим уравнение используя теорему Пифагора: АС²+ВС²=АВ²
(12+х)²+(8+х)²=20²
144+24х+х²+64+16х+х²=400
2х²+40х+208-400=0
2х²+40х-192=0 |÷2
х²+20х-96=0
Д=400-4×(-96)=400+384=784
х1= (-20-28)/2= –58/2= –29
х2=(-20+28)/2=8/2=4
Значение х1 нам не подходит поскольку сторона не может быть отрицательной поэтому используем х2=4
Итак: АС=12+4=16см
ВС=8+4=12см
АВ=20см
Найдём периметр треугольника:
Р=16+12+20=48
Чтобы найти радиус нам нужен полупериметр: р=48/2=24см
Вычислим радиу по формуле:
r=√((p-a)(p-b)(p-c)/24)
r=√((24-20)(24-16)(24-12)/24)=
=√(4×8×12/24)=√(384/24)=√16=4см
Площадь любой окружности вычисляется по формуле: πr², подставим в неё найденные данные и найдём Sопис и S впис:
Sопис=π×10²=100πсм²
Sвпис=π×4²=16πсм²