Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
-----------
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Поделитесь своими знаниями, ответьте на вопрос:
Ось цилиндра равна 3см. Площадь осевого сечения цилиндра равна 24 см в квадрате. Найти площадь полной поверхности цилиндра.
S = 56π
Объяснение:
ось h = 3 см
диаметр D = 24/3 = 8 см
полная поверхность цилиндра = боковая (π*D*h) + 2 основания 2*(π*D²/4) = π*D²/2
S = π*D*h + π*D²/2 = π * D* (h + D/2)
S = π * 8 * (3 + 8/2) = 56π