ответ:Если < 5=50 градусов,то 50 градусов равны и углы:<2,<3,<8, т к <5 и <8,а также < 2 и <3,являются накрест лежащие и равны между собой,а ещё о них можно сказать,что они вертикальные и равны между собой
Углы 2 и 7,а также 6 и 3, являются односторонними,их сумма равна 180 градусов
Угол 2 равен 50,тогда угол 7 равен
180-50=130 градусов
Угол 3 равен 50,тогда угол 6 равен
180-50=130 градусов
Углы 1 и 2 смежные,их сумма равна 180 градусов,угол 2 равен 50 градусов,тогда угол 1 равен
180-50=130 градусов
Угол 4 и 7 вертикальные,угол 7 равен 130 градусов,следовательно и угол 4 тоже равен 130 градусов
Объяснение:
Здравствуйте!
1).
∠1+∠2=180° смежные
∠1=2∠2 по условию
2∠2+∠2=180°
3∠2=180°
∠2=60°
∠1=2∠2=120°
2). Треугольники OBC и AOD равны по двум сторонам и углу между ними (AO=OB; CO=OD по условию; ∠СОВ=AOD -вертикальные) => ∠BCO=∠ABO как соответственные углы в равных треульниках.
AD || BC, т.к. накрест лежащие углы (∠BCO=∠ABO) равны. ЧТД.
3).
AB+AC+BC=34 см. (периметр)
AB=AC (боковые стороны)
BC (основание) =АВ+2 см= АС+ 2 см
BC+ (BC + 2 см)+(ВС+2 см) =34 см
3 ВС=30 см
ВС= 10 см
АВ=АС=10 см +2 см= 12 см
4). Треугольники АОВ и DOC равны по стороне и двум прилежащим углам (АО=ОD; ∠A=∠D по условию; ∠AOB=DOC вертикальные)
5). Проведем отрезок BD. Треугольники ABD и BDC- равнобедренные (AB=AD; BC=CD по условию) => ∠АВD=∠ADB и ∠CBD=∠CDB как углы при основании в р/б треугольнике.
∠В=∠АBD+∠CBD
∠D=∠ADB+∠CDB
А так как ∠АВD=∠ADB и ∠CBD=∠CDB, то ∠В=∠D.
6). Сумма острых углов прямогульного треугольника равна 90°.
∠A+∠B=90°
∠B=∠A-60° по условию
∠A+∠A-60°=90°
2∠A=150°
∠A=75°
∠B=∠A-60°=75°-60°=15°
7). Найдем ∠B. Сумма углов треугольника равна 180°.
∠А+∠В+∠С=180°
70°+55°+∠B=180°
∠B=180°-125°
∠B=55°
То есть ∠В=∠С=55°. А если углы в треуголнике равны, то треугольник равнобедренный. Основание BC.
7.1). Рассмотрим треугольник BMC. Он прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.
∠С+∠МBC=90°
55°+∠MBC=90°
∠MBC=35°
∠ABC=∠ABM+∠MBC
55°=∠ABM+35°
∠ABM=20°
Поделитесь своими знаниями, ответьте на вопрос:
В куб вписан шар, радиус которого равен 3. Найдите объем этого куба.
216.
Объяснение:
Шар вписан в куб. О1 и О2 точки касания.
Диаметр шара является высотой куба.
D=2R=2*3=6 высота куба, и его ребро.
Формула нахождения объема куба.
V=a³, где а ребро куба.
V=6³=6*6*6=216 объем куба.