Наш треугольник равнобедренный, значит высота, опущенная на основание 12см по Пифагору будет равна √(10²-6²) = √64 = 8см (так как высота и медиана, проведённые к основанию равнобедренного треугольника, совпадают между собой). Ищем вторую высоту. Эта высота делит наш треугольник на два прямоугольных с общим катетом (искомой высотой). По Пифагору имеем: h² = 10² - X² и h² = 12² - (10-X)² , где h - общий катет, а Х - отрезок Стороны, на которую опущена высота h, считая от вершины нашего треугольника). Приравниваем оба выражения и получаем: 100 - Х² = 144 - 100 + 20Х - Х². Отсюда Х = 2,8см. Тогда искомая высота равна h = √(100-2,8²) = √92,16 = 9,6cм. или h = √(144-7,2²) = √(144-51,84) = √92,16 = 9,6cм.
arbat
12.12.2021
1/ AB параллельна m, площадь АВС=1/2АВ*СН, СН-высота на АВ, так как две прямые параллельны, то перпендикуляр к одной из них будет перпендикулярен и другой, СН перпендикулярна m - СН величина поястоянная между двумя параллельными прямыми, а основание одно, какие бы точки не брались на m , площадь треугольника всегда будет=1/2АВ*СН 2. треугольник АВС, ВМ медиана на АС, АМ=МС=1/2АС, проводим высоту ВН на АС, площадь АВМ=1/2АМ*ВН=1/2*1/2АС*ВН=1/4*АС*ВН, площадь МВС=1/2МС*ВН=1/2*1/2АС*ВН=1/4*АС*ВН, площади треугольников равны, медиана делит треугольник на 2 равновеликих треугольника
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Постройте сечение призмы плоскостью ТЕС и найдите его площадь
Объяснение:
Решение на фото....
Но может, я ошиблась.