ответ:8
Объяснение: введём обозначения: пусть большая наклонная c₁=17, её проекция а₁; меньшая наклонная с₂=10, её проекция а₂ ; расстояние от точки до плоскости обозначим b. 1)Тогда по условию а₁ - а₂ =9 , значит а₁=9 + а₂ 2)По теореме Пифагора из большего прямоугольного треугольника b²= 17²- (9+a₂)²=208-18a₂ -a₂² Из меньшего прямоугольного треугольника b²= 100-а₂². Левые части этих равенств равны, значит и правые равны 208-18a₂ -a₂² = 100 - а₂² 18a₂=108 а₂=6. Найдём b²= 100-а₂²=100-36=64 b=8
Поделитесь своими знаниями, ответьте на вопрос:
Окружность проходит через вершины M и K треугольника MKN, сторону MN пересекает в точке P, а сторону KN в точке T. Найдите угол KNM исходного треугольника, если угол KMP=57, а угол TPN=68.
55°
Объяснение:
Четырёхугольник MPTK — вписанный ⇒ ∠KNM + ∠KTP = 180° ⇒ ∠KNM = 180° - ∠KTP. ∠KTP и ∠PTN — смежные ⇒ ∠KTP + ∠PTN = 180° ⇒ ∠KTP = 180° - ∠PTN. Тогда ∠KNM = 180° - ∠KTP = 180° - (180° - ∠PTN) = ∠PTN ⇒ ∠KNM = ∠PTN = 57°.
В треугольнике NPT ∠TPN + ∠PTN + ∠KNM = 57° + 68° + ∠KNM = 125° + ∠KNM = 180° ⇒ ∠KNM = 180° - 125° = 55°