1)Продолжим медиану CМ за точку М до точки D так, чтобы было выполнено равенство CМ = МD, и соединим полученную точку D с точками A и B .
Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограмма получаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:
ДС=АВ, 2СМ=АВ, СМ=1/2*АВ, АВ=24
2)ΔАВС-прямоугольный. По свойству катета ,лежащего против угла 30 градусов : СВ=1/2*АВ, СВ=12
Shtorm-Shoe
18.05.2023
Пирамида КАВС, в основании треугольнк АВС, АВ=ВС=5, АС=6, О-центр описанной окружности, КО-высота пирамиды, КА=КС=КВ=корень10, АО=СО=ВО=радиусы описанной окружности, проводим высоту ВН на АС=медиане, АН=НС=1/2Ас=6/2=3, треугольник АВН прямоугольный, ВН=корень(АВ в квадрате-АН в квадрате)=корень(25-9)=4, площадьАВС=1/2*АС*ВН=1/2*4*6=12, радиус описанной=(АВ*ВС*АС)/(4*площадьАВС)=(5*5*6)/(4*12)=3,125=25/8, треугольник АОК прямоугольный, КО-высота=(КА в квадрате-АО в квадрате)=корень(10-625/64)=корень15/8
СВ=12
Объяснение:
1)Продолжим медиану CМ за точку М до точки D так, чтобы было выполнено равенство CМ = МD, и соединим полученную точку D с точками A и B .
Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограмма получаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:
ДС=АВ, 2СМ=АВ, СМ=1/2*АВ, АВ=24
2)ΔАВС-прямоугольный. По свойству катета ,лежащего против угла 30 градусов : СВ=1/2*АВ, СВ=12