Усеченый конус АВСД, О -центр нижнего основания, О1 центр верхнего основания, АО=ВО=радиус нижнего основания=корень(площадь/пи)=корень(пи/пи)=1, АВ-диаметр нижнего основания=2*1=2, ВС-диаметр верхнего основания, ВО1=СО1=радиус верхнего основания=корень(площадь/пи)=корень(16пи/пи)=4, ВС=2*4=8, АВ=СД=5-образующая, сечение-равнобокая трапеция АВСД, АВ=СД, уголА=уголД, проводим высоты ВН и СК на АД, ВН=СК, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК прямоугольник ВС=НК=2, АН=КД=(АД-НК)/2=(8-2)/2=3, треугольник АВН прямоугольный, ВН -высота трапеции=корень(АВ в квадрате-АН в квадрате)=корень((25-9)=4, площадь АВСД (сечения)=(АД+ВС)*ВН/2=(2+8)*4/2=20
Евгений
23.10.2020
1) ΔАВС равнобедренный ⇒ высота АН⊥ВС явл. медианой ⇒ ВН=СН=3 По теореме о трёх перпендикулярах ДН⊥ВС ⇒ расстояние от точки Д до ВС = ДН. ΔАВН: АН=√(25-9)=4 ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора) АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2 по теореме о трёх перпенд. НО⊥АС ⇒ искомое расстояние от т. Н до т. О (до АС)= НО. ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2 Середина АВ - точка Е, АЕ=ВЕ=2. Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Какие из приведенных ниже вопросов можно отнести к закрытым а какие к открытым