а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
То есть это точка D(1,5;-2).
ridyana504
12.12.2022
Две прямые, перпендикулярные к третьей, не пересекаются, значит AMIIBK. <1=<MAK как накрест лежащие углы при пересечении двух параллельных прямых АМ и ВК секущей АК. Значит <AKM=90-<1=90-<MAK <2=<MBK как накрест лежащие углы при пересечении двух параллельных прямых АМ и ВК секущей ВМ. Значит <BMK=90-<2=90-<MBK По условию <MAK=<MBK, значит <AKM=<BMK Прямоугольные треугольники АМК и ВКМ равны, таким образом, по катету и прилежащему к нему острому углу: катет МК - общий, острые углы АКМ и ВМК равны.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В равнобедренном треугольнике ABC высота AE=12 , основание AC= 15. Найдите площадь треугольника
а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
То есть это точка D(1,5;-2).