СмыковаДарья1969
?>

Написать выражение для объема V конуса как функции его боковой поверхности S при данной образующей l=2

Геометрия

Ответы

Columbia777
Кратчайшее расстояние между скрещивающимися прямыми,  диагональю куба и диагональю основания куба, это расстояние между одной из двух прямых и плоскостью, проходящей через другую прямую параллельно первой прямой.
Построим плоскость, проходящую через прямую BD параллельно прямой АС1.
Возьмем точку К - середину отрезка СС1,  АС1 параллельна ОК ( т к ОК средняя линия в треугольнике АСС1). 
По признаку параллельности прямой и плоскости АС1 параллельна плоскости BDK. Найдем расстояние между ними, оно рано расстоянию между параллельными прямыми АС1 и ОК.  Опустим перпендикуляр ОН на АС1 и найдем его длину с треугольника АОС1.
AC=a \sqrt{2};AO= \frac{1}{2}AC= \frac{1}{2}a \sqrt{2};AC_{1}=a \sqrt{3};
OC _{1}= \sqrt{OC ^{2}+CC _{1} ^{2} }= \sqrt{ \frac{1}{2} a^{2}+a^{2} }=a \sqrt{ \frac{3}{2} };

Пусть AH=x;HC1=AC1-x;

Выразим ОН из двух треугольников.
OH ^{2}=AO ^{2}-AH^{2} =OC _{1} ^{2}-HC _{1} ^{2};
\frac{1}{2} a^{2}- x^{2}= \frac{3}{2} a^{2}-(a \sqrt{3}-x ) ^{2};
a^{2}+ x^{2}-3 a^{2}+2ax \sqrt{3}- x^{2} =0;
2ax \sqrt{3}=2 a^{2};x= \frac{a}{ \sqrt{3} };

OH= \sqrt{ \frac{1}{2} a^{2}- \frac{1}{3} a^{2} } = \frac{a}{ \ \sqrt{6} } .

ответ \frac{a}{ \sqrt{6} }
Dampil
В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
Высота, опущенная из вершины на большее основание равнобочной трапеции, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
В нашем случае высота равна диаметру вписанной окружности. 2R=2S/2π =12см. Меньший отрезок большего основания у равнобочной трапеции 10/2 = 5см. Тогда по Пифагору боковая сторона равна √(12²+5²) =√169 =13см,
Средняя линия трапеции равна полусумме оснований или (в нашем случае) полусумме боковых сторон = 13см. Площадь равна средней линии, умноженной на высоту = 13см*12см = 156см²

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Написать выражение для объема V конуса как функции его боковой поверхности S при данной образующей l=2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

elenaperemena8
KosarinPotemkina1888
stic1995
ermisyareg436
Воздвиженская
egornostaeva
levickaalubov5
krisrespect2
svetavalera
shkola8gbr
Милита1065
mali2681208
svetlana-ladyga
svetegal
dilovarnazarov1986