ответ:
объяснение:
пирамида правильная. значит, основанием данной пирамиды является правильный треугольник, а вершина проецируется в его центр.
центр правильного треугольника - центр вписанной и описанной окружности, т.е. точка пересечения его высот, являющихся в правильном треугольнике и медианами и биссектрисами.
а)
площадь поверхности пирамиды - сумма площадей основания и боковой поверхности.
формула площади правильного треугольника через его сторону
s=a²•√3/4
s(abc)=16√3/4=4√3 см²
в правильной пирамиде все боковые грани - равные равнобедренные треугольники.
для нахождения их площади следует найти апофему (апофемой называется высота боковой грани, проведенная из вершины правильного многоугольника.)
углы правильного треугольника равны 60°
высота основания сн=вс•sin60°=4•√3: 2=2√3
в правильном треугольнике высота=медиана.
медианы треугольника точкой пересечения делятся в отношении 2: 1, считая от вершины. =>
он=2√3: 3=2√3: 3
он⊥ав=>
по т. о 3-х перпендикулярах мн⊥ав и является высотой ∆ амс.
высота пирамиды перпендикулярна плоскости основания. =>
мо⊥сн
по т.пифагора из прямоугольного ∆ мон
мн=√(mo*+oh*)=√(36+12/9)=√(336/9)=(√336)/3
s(amb)=mh•ab: 2=(2√336)/3
s (бок)=3•(2√336): 3=2√336
s (полн)=4√3+2√336=2√3•(2+√112)=≈ 43,5888 см²
Поделитесь своими знаниями, ответьте на вопрос:
Решите задачу по геометрии нужноНайти :AO.Тема (касательная и окружность)">
а)ИЗ треугольника AOS(угол О=90 град.): SA = SO:cosSAO = sqrt(6): cos60 = sqrt(6):0,5 = 2sqrt(6).
б) Sбок = Pl / 2.
Необходимо найти апофему l и сторону основания.
ИЗ треугольника AOS(угол О=90 град.): ОА=SO: tg SAO = sqrt(6): sqrt(3)=sqrt(2)/
ОА - половина диагонали квадрата АВСD. Тогда вся диагональ АС = 2sqrt(2). Посвойству правильного 4-х угольника, сторона квадрата в sqrt(2)рах меньше его диагонали. Тогда а=АВ=2.
Р = 4а = 4*2=8
Пусть SК - апофема l. ОК - проекция апофемы на плоскость основания. ОК = 0,5 АВ = 2:2=1. Из треугольника SOK (угол SOK = 90 град)по теореме Пифагора: SK= sqrt(6+1)=sqrt(7)
Sбок = 8*sqrt(7) / 2 = 4sqrt(7).
Объяснение: