seletan1
?>

дан параллелограмм KBFD на его сторонах BF и KD отмечены соответственно точки c и A такие что угол ABK равeн CDF докажите что ABCD параллелограмм ​

Геометрия

Ответы

Анна498
Я не знаю как вставить сюда рисунок, ну и ладно, тогда вникай. Походу, что эти биссектрисы пересекаются.
В прямоугольнике все углы равны 90°, а противоположные стороны равны ⇒АВ=СД=6, ВС=АД=11
Биссектрисы ВХ и CY делят угол на равные углы 45°
Рассмотрим ΔХАВ и ΔYCД:
∠АВХ=∠ДCY = 45° (по док. выше)
АВ=АХ(Потому что ∠AXB(1)=∠DYC(2) = 45° (по св парал. прямых; ∠1 и ∠ 2-накрестлеж., потому что лежат  на парал. прямых при сек. ВX), а значит, что это треугольник равнобедренный)⇒ВА=СД
АХ=ДY (я здесь много что написал, но я надеюсь, что ты разбирешься и сам напишешь пограмотнее)
Из этого всего мы доказали, что  ΔХАВ и ΔYCД равны (по двум сторонам и углу между ними)
Из этого доказательства мы выяснили, что АХ=ДY = 6
Но вся сторона АД = 11, получается, что две биссектрисы пересекаются  и расстояние между XY 1 см(или в чем там измеряется)

Я здесь что-то много написал, но ты разберись и сам напиши попонятнее 
Но я старалась )
volchek01112240
Дано: 
ABCD - ромб ;
∠A =60° ;
MA ⊥ ( ABCD ) ;
MA  =AB .

α = ∠ ( (MCD) , (MCB) )   -?  (угол  между плоскостями )

Длину  стороны ромба обозначаем через  a : AB =AD =BC =CD =a; 
точка пересечения диагоналей   BD и  AC → O.
ΔBAD - равносторонний (AB =AD и ∠A =60° ) ⇒ BD = a  ;
AC =2AO =a√3 .   
---
MA ⊥ ( ABCD ) ⇒ MA ⊥ AB  и  MA ⊥ AD .
ΔMAB = ΔMAD  и т.к. MA  =AB =a  ⇒  MB =MD =√(a² +a²) =a√2 ,  
Следовательно 
 ΔMCD  = ΔMCB ( по трем сторонам _  MC -общее)  и  из  ΔMAC :  
MC =√(MA²+ AC²) = √(a²+ 3a²)  =2a .
---
MC линия пересечения  плоскостей  MCD и  MCB .
Проведем  в треугольнике ΔMCD   высоту DK:   DK ⊥ MC  (K- основание высоты ,  K ∈  [ MC]   ;  MC² > MB² +DC² ⇒ ∠ MDC _тупой ) ,  точка  K  соединяем  с  вершиной  B ,  очевидно  BK ⊥ MC  из ΔMCD  = ΔMCB .    
Таким образом ∠DKB =  α  искомый угол .
По теореме косинусов из  ΔMCD :
MD²  = MC² +CD² - 2MC*CD*cos∠MCD ⇔
2a² =4a² +a² -2*2a*acos∠MCD⇒ cos∠MCD =3/4 ⇒  
sin∠MCD = √(1 -cos²∠MCD) =√(1 -(3/4)² ) =(√7) / 4
KD =CD*sin∠MCD  = (a√7) / 4    (из ΔKCD ).
---
из ΔDKO :   sin (α/2 ) = DO / DK =(a/2) / (a√7) / 4 =2 /√7.
α/2 = arcsin (2 /√7) ⇒ α =2arcsin (2 /√7).

ответ :  2arcsin (2 /√7) .                       * * * 2arcsin (2√7 / 7 ) * * * .     

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

дан параллелограмм KBFD на его сторонах BF и KD отмечены соответственно точки c и A такие что угол ABK равeн CDF докажите что ABCD параллелограмм ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Mashkov-Daniil1764
Вектор а (2;-3) вектор b(-6;-5)
Lenuschakova1982316
smileystyle
Mukhina1811
TatyanaVladimirovich
marinavg63607
vikapar2646
lepekhov4011
diana0720
olegmgu1
mmihail146
Иванова
m79857860146895
eleniloy26
bristolhouse20151001