Высота QL делит тр-к PQR на два подобных треугольника: QRL и PQL. Эти прямоугольные тр-ки подобны по двум равным углам: уг.QRL = уг.PQL и уг.RQL = уг.QPL как острые углы с взаимно перпендикулярными сторонами. Эти тр-ки подобны также и исходному тр-ку PQR по тем же углам.
Против равных углов в подобных тр-ках лежат пропорциональные стороны:
Катет PQ в тр-ке PQR и катет PL в тр-ке PQL лежат против равных углов (уг.QRL = уг.PQL), гипотенуза PR в тр-ке PQR и гипотенуза PQ в тр-ке PQL лежат (естественно!) против прямых углов, поэтому
PQ:PL = PR:PQ: ,
откуда
PQ^2 = PL * PR.
Поделитесь своими знаниями, ответьте на вопрос:
Луч ОС делит <АОВ на два угла , где <AOB=109º и <AOC=63º. Найти <COB
Эта задача на построение, а не на арифметику.
Построение.
1. С циркуля и линейки строим прямой угол АВС. (Возводим
перпендикуляр к прямой ВС из точки В циркулем и линейкой).
2. Делим угол АВС пополам. Для этого циркулем проводим
окружность с центром в точке В и затем из точек пересечения G и
H этой окружности с прямыми АВ и ВС радиусом GH проводим
окружности. Соединяем точку B c точкой пересечения этих
окружностей D1 прямой BD. <DBC=45°.
3. На прямой ВС строим угол СВЕ, равный 30°. Для этого циркулем проводим окружность радиусом ВН с центром в точке Н и с центром
в полученной точке R на прямой ВС этим же радиусом вторую
окружность. Соединяем точку В с точкой пересечения этих окружностей Е1 прямой ВЕ и получаем угол = 30°.
Доказательство: треугольник BE1R прямоугольный, так как <BE1R
опирается на диаметр BR. Причем BR (гипотенуза) = 2*E1R.
Следовательно, <E1BR=30°.
Получили угол DBE= <DBC-<EBC= 45°-30°=15°.
4. Разделив угол ЕВС (так же как делили угол АВС) пополам, получим два угла <EBF и <FBC, каждый из которых равен 15°.
Таким образом мы разделили угол DBC = 45 градусов на три равных угла.
Подробнее - на -