Диагональ параллелограмма ЦН высотой КГ делится на отрезки ЦГ и ГН
x+y = 2√7
Теорема Пифагора для ΔЦКГ
a² = x² + h²
Теорема Пифагора для ΔНКГ
b² = y² + h²
ΔЕНЦ и ΔКГН подобны - один угол общий, второй угол прямой
2√7/√3 = b/h
ΔЦУН и ΔКГН подобны - один угол общий, второй угол прямой
2√7/(2√3) = a/h
-----------
Пять переменных, пять уравнений. Можно начинать, всё готово.
a = h√7/√3
b = h(2√7)/√3
подставляем в три другие уравнения
---
x + y = 2√7
h²7/3 = x² + h²
h²4*7/3 = y² + h²
---
x + y = 2√7
h²4/3 = x²
h²25/3 = y²
---
полагаем, x>0 y>0
x + y = 2√7
h*2/√3 = x
h*5/√3 = y
---
h*2/√3 + h*5/√3 = 2√7
7h/√3 = 2√7
h₁ = 2√3/√7
a₁ = h₁√7/√3 = 2
b₁ = h₁(2√7)/√3 = 4
S₁ = 2√7*h₁ = 4√3
S₁² = 16*3 = 48
---
Попробуем ещё варианты, при которых высота ГК находится на продолжении диагонали ЦН
полагаем, x<0 y>0
x + y = 2√7
h*2/√3 = -x
h*5/√3 = y
---
-h*2/√3 + h*5/√3 = 2√7
3h/√3 = 2√7
h√3 = 2√7
h₂ = 2√7/√3
a₂ = h₂√7/√3 = 14/3
b₂ = h₂(2√7)/√3 = 28/3
S₂ = 2√7*h₂ = 28/√3
S₂² = 784/3
---
Ещё вариант, попробуем передвинуть высоту в другую сторону, если получится
полагаем, x>0 y<0
x + y = 2√7
h*2/√3 = x
h*5/√3 = -y
---
h*2/√3 - h*5/√3 = 2√7
-3h/√3 = 2√7
-h√3 = 2√7
h = -2√7/√3
Нет, третьего решения нет.
Как нет и четвёртого решения с x<0 y<0
Итак, ответ
S₁² = 48
S₂² = 784/3
Поделитесь своими знаниями, ответьте на вопрос:
1.70. 1) Біреуі екіншісінен 30° үлкен; 2) айырмасы 40°-қа тең; 3) біреуі екіншісінен 3 есе кіші; 4) өзара тең болатынсыбайлас бұрыштарды табыңдар.
a = 8√3 см
Высота
y = 6 см
Высота основания
ВФ = ВА*sin(60°) = a√3/2
Медианы точкой пересечения делятся в отношении 2 к 1 начиная от угла
поэтому
ВО/ОФ = 2/1
ВО = 2/3*ВФ = a/√3
ОФ = ВО/2 = а/(2√3)
---
Площадь основания
S₁ = 1/2*a²*sin(60°) = a²√3/4
---
Апофему ФХ найдём из треугольника ОФХ по т. Пифагора
ФХ² = ОХ² + ОФ²
ФХ² = h² + а²/(4*3) = h² + a²/12
ФХ = √(h² + a²/12)
---
Площадь одной боковой грани
S₂ = 1/2*АС*ФХ = 1/2*a*√(h² + a²/12)
Полная площадь
S = S₁ + 3S₂ = a²√3/4 + 3/2*a*√(h² + a²/12)
Подставим значения
S = (8√3)²√3/4 + 3/2*8√3*√(6² + (8√3)²/12)
S = 64*3√3/4 + 3*4√3*√(36 + 64*3/12)
S = 16*3√3 + 12√3*√(36 + 16)
S = 48√3 + 12√3*2√13
S = 48√3 + 24√39 см²
---
Боковое ребро найдём по т. Пифагора из треугольника ВОХ
ВХ² = ВО² + ОХ²
ВХ² = (a/√3)² + h²
ВХ² = a²/3 + h²
BX = √(a²/3 + h²)
Подставляем числа
BX = √((8√3)²/3 + 6²) = √(64+36) = √100 = 10 см
Это боковое ребро
---
Объём
V = 1/3*S₁*h
V = 1/3*a²√3/4*h = a²h/(4√3)
V = (8√3)²6/(4√3) = 192*√3/2 = 96√3 см³