Высотой пирамиды РАВС есть боковое ребро РА, принадлежащее двум вертикальным граням АРС и АРВ.
Поведём сечение пирамиды вертикальной плоскостью, проходящей через высоту пирамиды перпендикулярно стороне ВС в точке Д.
Отрезок АД = d/sinα.
Так как АД - высота правильного треугольника, то он равен стороне а основания, умноженной на косинус 30 градусов.
Отсюда находим сторону основания а:
a = АД/cos 30° = (d/sinα)/(√3/2) = 2d/(√3sinα).
Площадь основания So = a²√3/4 = 4(√3)d²/(4*3sin²α) = (√3)d²/(3sin²α).
Высота Н пирамиды равна:
Н = d/cosα.
Отсюда получаем объём пирамиды.
V = (1/3)SoH = (1/3)* ((√3)d²/(3sin²α))*(d/cosα) = ((√3)d³/(9sin²α*cosα).
Поделитесь своими знаниями, ответьте на вопрос:
Суретте AF ∥ BG ∥ CH, OA = 5, AB = 4, BC = 7. OF : FG : GH кесінділер қатынасын тап.
OF:FG:GH=5:4:7