Если каждая грань - ромб, то один острый угол верхнего основания совпадает с двумя тупыми углами боковых граней.
Так как ромб боковой грани расположен своей стороной на основании, то вершина его тупого угла находится на высоте ромба.
Высота ромба h = a*sin φ.
Проекция стороны ромба на основание равна a*cos φ.
Проекция высоты ромба на основание равна:
hп = a*cos φ*tg(φ/2).
Угол делится пополам из за симметрии верхнего основания по отношению к нижнему.
Отсюда по Пифагору находим высоту призмы.
H = √(h² - (hп)²) = √(a²*sin²φ - a²*cos²φ*tg²(φ/2)) = a√(sin²φ - cos²φ*tg²(φ/2)).
Нехай задано рівнобічну трапецію ABCD, основи паралельні AD||BC, сторони AB=CD рівні між собою, BH⊥AD, де BH=12 см – висота трапеції, опущена на сторону AD,
AH=5 см, HD=11 см, звідси AD=AH+HD=5+11=16 см.
Розглянемо прямокутний трикутник ABH (∠AHB=90) та знайдемо за формулою Піфагора гіпотенузу AB:
AB^2=AH^2+BH^2, звідси
Оскільки трапеція ABCD – рівнобічна, то відповіні сторони рівні CD=AB=13 см.
Опустимо ще одну висоту CK на сторону AD, тоді кут прямий CK⊥AD (∠CKD=90).
Розглянемо прямокутні трикутники ABH і KCD.
У них ∠BAH=∠CKD – як кути при основі AD у рівнобічній трапеції ABCD (за властивістю), і CD=AB=13 см.
Тому, за ознакою рівності прямокутних трикутників, трикутники ABH і KCD рівні (за гіпотенузою і гострим кутом), звідси слідує AH=KD=5 см.
Тоді у рівнобічній трапеції:
HK=HD-KD=11-5=6 см, тому BC=HK=6 см.
Знайдемо периметр рівнобічної трапеції ABCD:
P=AB+BC+CD+AD=13+6+13+6=48 см.
Відповідь: 48 см – В.
Поделитесь своими знаниями, ответьте на вопрос:
8.* З однієї точки кола проведено дві взаємно перпендикулярні хорди, віддалені від центра на 6 см і 10 см. Знайдіть їхні довжини.
Дожини iнтомат 8-3 дорime