а) Треугольник АВС равнобедренный с боковыми сторонами АВ=ВС. б) В треугольнике АВС: ∠А = ∠С = 70°, ∠В = 40°.
Объяснение:
Пусть АК, ВН и СР - высоты треугольника АВС.
Угол ВОК - смежный с углом АОВ и равен 180° -110° =70°по сумме смежных углов. Аналогично, ∠ВОР= 70°, как смежный с ∠ВОС. => Прямоугольные треугольники ВОP и ВОК равны по гипотенузе и острому углу (третий признак). Из равенства этих треугольников:
∠ОВР=∠ОВК = 20° (по сумме острых углов прямоугольного треугольника 90° - 70° =20°) .
Следовательно, высота ВН треугольника АВС является и биссектрисой => треугольник АВС равнобедренный с основанием АС и боковыми сторонами АВ=ВС. Что и требовалось доказать.
∠АВС = ∠ОВР + ∠ОВК = 40°.
∠ВАС = ∠ВСА = (180 - 40)/2 =70° (как равные углы при основании равнобедренного треугольника.
Поделитесь своими знаниями, ответьте на вопрос:
Один из смежных углов на 96 градусов больше другого. найдите смежные углы. 3.разность смежных углов равна 32 градуса. Найдите смежные углы. 4.при пересечении двух прямых один из углов равен 12 градусов. Найдите образовавшиеся тупые углы
2. 42°, 138°
3. 87 и 106 градусов
4. 336, 336, 12, 12
Объяснение:
2. (180° - 96°) : 2 = 42° - меньший угол
42° + 96° = 138° - больший
3. Решим данную задачу при уравнения.
Пусть один из смежных углов х градусов, тогда второй из смежных углов (х + 32) градусов. Нам известно, что сумма градусных мер смежных углов равна 180 градусов. Составляем уравнение:
х + х + 32 = 180;
х + х = 148;
х * (1 + 1) = 148;
х * 2 = 148 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 148 : 2;
х = 74 градусов — один из смежных углов;
74 + 32 = 106 градусов — второй из смежных углов.
4. При пересечении 2 прямых образуется 4 угла, углы ровны попарно
360-(12+12)=336 градуса - это два тупых угла
336:2=168 градуса - один тупой угол