priemni451
?>

и 3 в уровне А. И по одному из уровней Б и В.

Геометрия

Ответы

Faed_Arakcheeva
1. В основании правильной треугольной пирамиды - правильный треугольник, а высота проецируется в его центр.
SO - высота пирамиды, ОС - проекция SC на плоскость основания, значит ∠SCO - угол наклона бокового ребра к плоскости основания - искомый.
ОС - радиус окружности, описанной около правильного треугольника:
ОС = АВ√3/2 = 6√3/3 = 2√3.
ΔSOC: ∠SOC = 90°, ctg∠SCO = OC / SO = 2√3 / 8 = √3/4

2.  Основание правильной четырехугольной пирамиды - квадрат, боковые грани - равнобедренные треугольники.
Пусть Н - середина CD, тогда SH - медиана и высота равнобедренного треугольника SDC, ОН - средняя линия ΔADC, ⇒ ОН║AD, ⇒ OH⊥CD.
Значит ∠SHO - линейный угол двугранного угла наклона боковой грани к основанию - искомый.
Радиус окружности, описанной около квадрата, равен половине его диагонали, значит АС = 8.
АС = АВ√2 ⇒ АВ = АС/√2 = 8 / √2 = 4√2 - сторона квадрата
ОН = AD/2 = 2√2
ΔSOH: ∠SOH = 90°, cos∠SHO = OH / SH = 2√2/7

3. Sбок  = 2πRH = 160π см² ⇒ 2RH = 160 см²
ABCD - осевое сечение.
Sabcd = 2R·H = 160 см²
ABEF - сечение, параллельное оси и отстоящее от нее на 6 см.
Так как H = R - 2,то
2R(R - 2) = 160
R² - 2R - 80 = 0
D = 4 + 320 = 324
R = (2 + 18)/2 = 10  см      R = (2 - 18)/2 = - 8 - не подходит по смыслу задачи
H = 10 - 2 = 8 см
Если Н -середина ВЕ, то ОН = 6 см - расстояние от оси до сечения.
ΔОНВ: ∠ОНВ = 90°, по теореме Пифагора
             НВ = √(ОВ² - ОН²) = √(100 - 36) = 8 см
ВЕ = 2НВ = 16 см
Sabef = BE · H = 16 · 8 = 128 см²

4. ΔАВС - данное сечение - равнобедренный треугольник (АВ = АС = l  образующие)
∠АВС = ∠АСВ = 75°, ⇒ ∠ВАС = 30°.
Sabc = 1/2 · AB · AC · sin ∠BAC = 16 см²
l² · sin30° = 32
l² = 64
l = 8 cм
ΔАОВ: ∠ВАО = 30° по условию.
             cos∠BAO = AO/AB
             cos30° = h/l ⇒  h = l · cos30° = 8√3/2 = 4√3 см
             r = OB = AB · sin30° = 8 · 1/2 = 4 см
Площадь осевого сечения:
Sakc = 1/2 · KC · AO = r · h = 16√3 см²
Sполн = πr(l + r) = π · 4 · (8 + 4) = 48π см²
ivanovmk1977

меньший катет АС=6см, больший катет ВС=12√3 см

Объяснение:

обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:

\frac{ac}{ab} = \frac{ah}{ac}

теперь подставим наши значения в эту пропорцию:

\frac{ac}{24} = \frac{6}{ac}

перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:

АС ²=6×24=144

АС=√144=12см

Теперь найдём катет ВС по теореме Пифагора:

ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см


1)Проекція катетів прямокутного трикутника на гіпотенузу відповідно дорівнюють 18см і 6 знайдіть мен

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

и 3 в уровне А. И по одному из уровней Б и В.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ERodina1
egoryuzbashev
zsa100
Ekaterina1654
sav4ukoxana7149
stusha78938
dmitrievanata83538
Маркина Ворошилина
most315
varvara-kulkova
Ohokio198336
yatania-popovich7
textildlavas21
Pavlovna897
rmitin