tarkhanovilya
?>

В прямоугольном треугольнике АВС уголC = 90°, ВС = 6 см, уголА - 30Найдите AC.От в e т:​

Геометрия

Ответы

Burov1446
А). Цитата: "Существование и единственность вневписанной
окружности обусловлены тем, что биссектрисы двух внешних углов
треугольника и биссектриса внутреннего угла, не смежного с этими
двумя, пересекаются в одной точке, которая и является центром
такой окружности".
В треугольнике АВС <ABC+<BCA=180°-<A.
<ABC=180°-<CBP,  <BCA=180°-BCK - как пары соответственно смежных
углов.
Окружность (Q;R) - вневписанная окружность треугольника АВС по
определению (из условия). Следовательно, BQ и СQ - биссектрисы углов <CBP и <BCK соответственно.
Тогда <BQC=180°-(1/2)*(CBP+BCK)=180°-(1/2)*(360°-<ABC-<BCA). Или
<BQC=(1/2)*(<ABC+<BCA).
Но <BQC - вписанный угол, опирающийся на дугу ВС, а
<BOC- центральный угол, опирающийся на ту же дугу.
<BOC=2*<BQC = <ABC+<BCA = 180°-<A.
Тогда в четырехугольнике АВОС сумма противоположных углов
<А+<BOC=<A+180°-<A = 180°. Значит около этого четырехугольника
можно описать окружность и при том только одну.
Следовательно, окружности, описанные около треугольника АВС и
четырехугольника АВОС - одна и та же окружность и точка О лежит
на этой окружности, что и требовалось доказать.

б). Пусть R/r=4/3.  r=(3/4)*R.
<А+<BOC= 180° (доказано выше).
CosA = -Cos(180-A) = -Cos(BOC).
ВС - общая хорда пересекающихся окружностей.
По теореме косинусов из треугольника ОВС:
BC²=2R² - 2R²Cos(BOC)=2R²+ 2R²CosA=2R²(1+CosA) . (1)
Bз треугольника AВС:
<BJC - центральный угол, опирающийся на ту же дугу, что и <BAC.
<BJC=2<A.
BC²=2r² - 2r²Cos(BJC)=2r²(1-Cos2A) . (2)
Приравняем (1) и (2):
2R²(1+CosA)=2r²(1-Cos2A)  или
2R²(1+CosA)=2(9/16)R²(1-Cos2A)  или
(1+CosA)=(9/16)(1-Cos2A).
По формуле приведения Cos2A= 2Cos²A-1, тогда
1+CosA=(9/16)(1-2Cos²A+1) => 1+CosA=(9/8)(1-Cos²A).
Пусть CosA= Х, тогда:
8+8Х=9-9Х²  или
9Х²+8Х-1=0
Х1=(-4+√(16+9))/9 = 1/9.
Х2=-1 - не удовлетворяет условию, так как <A > 0.
ответ: CosA=1/9.

Точка q - центр окружности, касающейся стороны bc и продолжении сторон ab и ac треугольника abc, точ
Точка q - центр окружности, касающейся стороны bc и продолжении сторон ab и ac треугольника abc, точ
maruska90

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В прямоугольном треугольнике АВС уголC = 90°, ВС = 6 см, уголА - 30Найдите AC.От в e т:​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

annakorotaev3
oxy03214428
zolotayaoxana1982
stailwomen31
alekbur
eutenkova805
PushkinaKurnosov984
ВладимировнаАлександр1421
Инна_Nina1182
heodbxbbshe
edelstar83
kozhevniks
tinadarsi
nikomuneskazhu60
kirill76536