В равностороннем треугольнике все углы равны 60°.
Высоты, по свойству высоты равнобедренного треугольника, являются биссектрисами и медианами, и каждая делит его на 2 равных прямоугольных треугольника.
Высота в таких треугольниках является большим катетом, который противолежит углу 60°, сторона равностороннего треугольника- гипотенузой, а меньший катет противолежит углу 30° и равен половине гипотенузы (свойство)
-----------------
Примем меньший катет (половину стороны) равным а. Тогда гипотенуза (сторона равностороннего треугольника) равна 2а.
По т.Пифагора с²=a²+b² (с- гипотенуза, а и b- катеты)⇒
(2а)²=а²+((13√3)²⇒
3а²=13²•3 ⇒ а=13,
Сторона данного равностороннего треугольника 2а=26 (ед. длины)
или
с=b:sin60°, где с - сторона равностороннего треугольника, b- его высота.
с=(13√3):(√3/2)=26 (ед. длины)
Поделитесь своими знаниями, ответьте на вопрос:
НУЖНО ПРЯМ СЕЙЧАС! Я БУДУ ОЧЕНЬ БЛАГОДАРНО КТО РЕШИТ ПРАВИЛЬНО И ПОШАГОВО И ПОНЯТНО!
№1
1) Неверно (эти углы вертикальны)
2) Верно
3) Неверно (он прямой, по условию он равен 90°)
4) Верно (угол ВКЕ смежный с углом АКЕ, тогда их сумма равна 180°. Следовательно угол ВКЕ=180°–угол АКЕ=180°–90°=90°. Угол равный 9∆° – прямой)
ответ: 2) 4)
№2 (с фото)
Угол КВС – угол образованный биссектрисой и стороной угла, следовательно он будет равен половине угла, который делит данная биссектриса.
Тоесть угол КВС=угол МВК÷2=162°÷2=81°
ответ: 81°
№3
Углы CMD и BMC – смежные, значит их сумма равна 180°.
Следовательно угол СМD=180°–угол ВМС=180°–58°=122°
ответ: 122°
№4
Пусть DM=x, тогда ВМ=х+12
BD=DM+BM
Составим уравнение:
34=х+х+12
2х=22
х=11
Тогда DM=11 см, а BM=11+12=23 см
DM=11 см, а BM=11+12=23 смответ: 23 см; 11 см.