Боковая сторона равнобедренного треугольника равна 10 см, а его основание 12 см. Найдите его площадь.
Биссектриса угла А параллелограмма ABCD делит сторону ВС на отрезки ВК и КС, равные соответственно 8 см и 4 см. Найдите периметр параллелограмма.
В трапеции ABCD углы А и В прямые. Диагональ АС — биссектриса угла А и равна 6 см. Найдите площадь трапеции, если угол CDA равен 60°.
В окружности проведены две хорды АВ и CD, пересекающиеся в точке К, КС = 6 см, АК = 8 см, ВК + DK = 16 см. Найдите длины ВК и DK.
Квадрат со стороной 8 см описан около окружности. Найдите площадь прямоугольного треугольника с острым углом 30°, вписанного в данную окружность.
Объяснение:
3)
Сумма углов прилежащих к боковой стороне трапеции равна 180°
<М+<К=180°. Отсюда следует
<К=180°-<М=180°-124°=56°
ответ: <К=56°
4)
АВ=CD=7 ед, по условию
AD=P(ABCD)-AB-CD-BC=27-5-2*7=8ед
ответ: AD=8ед
5)
ВС=МD=5см
Рассмотрим треугольник ∆АВМ
∆АВМ- прямоугольный треугольник
<ВМА=90°, ВМ- высота
<ВАМ=60°, по условию
Сумма острых углов в прямоугольном треугольнике равна 90°
<АВМ=90°-<ВАМ=90°-60°=30°
АМ- катет против угла <АВМ=30°;
АМ=АВ/2=4/2=2см.
АD=AM+MD=2+5=7см
ответ: AD=7см
6)
ВСDK- параллелограм.
ВС=КD;
CD=BK, свойства параллелограма.
АВ=АК=ВС=СD, по условию
Таким образом трапеция АВСD- делиться на 5 равных отрезка
АВ=Р(ABCD)/5=30/5=6см.
АD=2*AB=2*6=12см
ответ: AD=12см
Поделитесь своими знаниями, ответьте на вопрос:
Решить задачу на прикреплённом файле. Решение расписывать необязательно.
S=Pr/2=60*4/2=120 см2
ответ: 120 см2