ABCD-правильная трапеция, ВС-меньшее основание, тогда АВ=ВС=СD. Из точки В проведем высоту ВН. Диагональ АС делит высоту на отрезки ВО=15см, ОН=12см.
Обозначим АВ=х и выразим АН=√(x^2-729). Треуг. АВС-равнобедренный, так как АВ=ВС, значит угол ВАС=ВСА. Теперь рассмотрим треуг. АНО и СВН. Они прямоугольные. Угол ВСО=НАО как накрест лежащие при параллельных AD и ВС и секущей АС, следовательно треуг. АНО и СВН подобные. Стороны треуг. АНО относятся к соответствующим сторонам треуг. СВН как 15/12 или 5/4.
ВС/АН=х/√(x^2-729)=5/4
5*√(x^2-729)=4x (чтобы избавиться от корня, возведем обе части в квадрат)
25*9(x^2-729)=16x^2
25x^2-16x^2-18255=0
9x^2=18255
x^2=2055
x=45
AB=BC=CD=45см
Найдем большее основание AD.
АН=√(x^2-729)=√(2025-729)=36см
AD=45+36*2=117см
1) Пусть основания трапеции: большее АД и меньшее ВС
2) Пусть диагональ точкой О делится на два отрезка ВО и ОД (или СО и ОА) и пусть ВО=х см.
3) Треугольник ВОС подобен труегольнику ДОА, значит ВО:ОД=ВС:АД, тогда ОД=(13х)/7 см.
4) Из прямоугольного треугольника ВОС по т. Пифагора: "два икс в квадрате равно 49", т.е. х="семь деленное на корень из двух".
5) Вся диагональ ВД равна х+(13/7)х=(20/7)х=(20*7)/(7 корней из 2)=20/корень из 2.
Площадь ирапеции равна половине произведения диагоналей на синус угла между ними. Тогда S= 1/2 * 400/2 * sin 90=100*1=100 квадратных см.
Поделитесь своими знаниями, ответьте на вопрос:
Запишите ответ к номеру 2. Угол AOD в четыре раза больше угла AOF. Найти градусную меру угла FOD, если = 120.
AOF=6°
AOD=6*4=24°
AOD=24°
6°+24°+12°=42°