на прямой отложены 2 равных отрезка MN и KL на отрезок KL взята. M которая делит его на отношении 3/4 считая точке K Найдите расстояние между M, Lесли KN равно 8 см
Пусть точки K, L, M лежат соответственно на сторонах AB, BC и AC правильного треугольника ABC, причём KL $ \perp$ BC, LM $ \perp$ AC, MK $ \perp$ AB. Тогда
Аналогично $ \angle$KML = 60o. Значит, треугольник KLM также равносторонний. Прямоугольные треугольники AKM, BLK и CML равны по гипотенузе и острому углу, а т.к. CM = AK = $ {\frac{{1}}{{2}}}$AM, то CM : AM = 1 : 2. Аналогично AK : KB = BL : LC = 1 : 2.
hrviko
28.06.2022
Площадь большого прямоугольника: S=a*b=2000 (м²).
Длина одного прямоугольника: х; длина другого: х+10.
Площади прямоугольников относятся, как 2:3, значит: S1/S2=2/3.
Площадь одного прямоугольника: S1=x*b; другого: S2=(x+10)*b.
Подставим в уравнение выше: (x*b)/((x+10)*b)=2/3, x/(x+10)=2/3, x=20.
Значит, длина первого прямоугольника: 20 м; второго — 20+10=30 (м).
Длина большого прямоугольника равна сумме длин тех, что внутри: 20+30=50.
Исходя из формулы площади, которую я написал вначале, вычислим ширину: b=S/a=2000/50=40 (м).
Итак, больший прямоугольник, это тот, у которого больше длина. Длина большего прямоугольника 30 м, а ширина, как и у первоначального прямоугольника, 40 м. 30/40=3/4
ответ. 3:4.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
на прямой отложены 2 равных отрезка MN и KL на отрезок KL взята. M которая делит его на отношении 3/4 считая точке K Найдите расстояние между M, Lесли KN равно 8 см
1 : 2
Объяснение:
Пусть точки K, L, M лежат соответственно на сторонах AB, BC и AC правильного треугольника ABC, причём KL $ \perp$ BC, LM $ \perp$ AC, MK $ \perp$ AB. Тогда
$\displaystyle \angle$MKL = 180o - $\displaystyle \angle$BKM - $\displaystyle \angle$LKB = 180o -90o -30o = 60o.
Аналогично $ \angle$KML = 60o. Значит, треугольник KLM также равносторонний. Прямоугольные треугольники AKM, BLK и CML равны по гипотенузе и острому углу, а т.к. CM = AK = $ {\frac{{1}}{{2}}}$AM, то CM : AM = 1 : 2. Аналогично AK : KB = BL : LC = 1 : 2.