ответ:ECG=13,5°
DCF=126°
HCF=54°
Объяснение:так как СЕ биссектриса DCE то она естественно равна половине DCE, тоесть делит угол пополам. Отсюда ECG равно 13,5°. Я думала что я неправильно решила, но здесь чертёж неправильно начерчен, поэтому я скажу как есть. У DCF тоже есть бессектриса, значит она также разделила угол попалам, разделённый угол биссектрисой CE=27°, значит, чьобы узнать скольким градусам равен угол DCF мы должны тупо умножить на два, но я ещё раз говорю чертёж неправильный, объясрите, как тупой угол может быть равен 54°. Отсюда, раз DCH развёрнутый угол и равен 180°, чтобы найти HCF мы просто от 180°-DCF(54°) и вуоля получается 126°. Но так как чертёж неправильный, фиг знает какой там тупой угол. Вооот
Если логично и правильно,то HCF =54,а DCF= 126. Тебе нужно поменять чертёж)
Поделитесь своими знаниями, ответьте на вопрос:
Дан ∠ AOB = 54°. Внутри угла AOB построен луч OC такой, что ∠ AOC = 2∠ BOC. Найдите углы ∠ AOC и ∠ BOC.
В кубе ABCDA1B1C1D1 найдите угол между векторами:
a)AB и AD , б)BB1 и CC1 , в)AC1 и A1D1
Объяснение:
Углы между векторами а)∠АВ,АD=90°, т.к все грани куба являются квадратами.
б) ∠ВВ₁,СС₁=0°, т.к эти вектора лежат на параллельных прямых.
в) ∠АС₁,А₁D₁=arcctg√2.
Т.к. вектор А₁D₁=AD , то найдем угол ∠АС₁,АD
Из ΔВСС₁ -прямоугольный. Пусть ребро куба а, тогда по т. Пифагора
ВС₁=а√2.
По т. о трех перпендикулярах если проекция ВС перпендикулярна , прямой лежащей в плоскости АВ, то и наклонная С₁В перпендикулярна прямой лежащей в плоскости АВ⇒ ΔАВС₁-прямоугольный .
tg∠С₁FD=BС₁/AB или tg∠С₁FD=а√2/а , tg∠С₁FD=√2 , ∠С₁FD=arctg√2,
а значит у угол между векторами ∠АС₁,А₁D₁=arcctg√2.