Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1}. Модуль или длина вектора: |a|=√(x²+y²). cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: Вектор АВ(2-1;5-(-2)) или AB(1;7) |AB|=√(1²+7))=5√2. Вектор ВC(-5-2;4-5) или BC(-7;-1) |BC|=√(7²+(-1)²)=5√2. Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2. Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2. Вектор AD(-6-1);-3-(-2)) или AD(-7;-1) |AD|=√((-7)²+(-1)²))=5√2. Итак, четырехугольник АВСД параллелограмм (так как его противоположные стороны попарно равны. А поскольку все его стороны равны, то это или ромб, или квадрат. Найдем один из углов четырехугольника между сторонами АВ и AD (этого достаточно). cosα=(Xab*Xad1+Yab*Yad)/[√(Xab²+Yab²)*√(Xad²+Yad²)]. Или cosα=(1*(-7)+7*(-1))/[√(1²+7²)*√((-7)²+(-1)²)]=--14/5√2. Следовательно, этот угол тупой.А так как в квадрате все углы прямые, то вывод: четырехугольник АВСD - ромб что и требовалось доказать.
Марина566
20.02.2020
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Где произошла первая встреча Базарова с П. Кирсановым ?а)в деревне Марьино б)в г.Москве в)Петербурге.
в)Петербурге удачи надеюсь я правильно ответила