ответ:1. Если KM = NJ, ML = JR, __М= J__, то ΔKML=ΔNJR по первому признаку- по двум сторонам и углу между ними
2. KM = NJ, ML = JR,_KL=NR_, то ΔKML=ΔNJR по третьему признаку-по трем сторонам.
3. KL = NR, ∡ K = ∡ N, _∡ L= ∡ R, то
ΔKML=ΔNJR по второму признаку-по стороне и двум прилежащим углам.
4. KL = NR, ∡ K = ∡ N,_KM=NJ__ , то ΔKML=ΔNJR по первому признаку- по двум сторонам и углу между ними
5. ∡ M = ∡ J, ∡ L = ∡ R, _ML =NR_ , то ΔKML=ΔNJR по второму признаку-по стороне и двум прилежащим углам.
Поделитесь своими знаниями, ответьте на вопрос:
В параллелограмме ABCD угол А равен 60°. Высота ВЕ делит сторону AD на две равные части. длинна диагонали BD ровно 10см, Найдите периметр параллелограмма(можно с Дано, Решение и чертёж за это)
3)11
Объяснение:
АВСДА1В1С1Д1 - усеченная пирамида , в основаниях квадраты АВСД со стороной =10, А1В1С1Д1 со стороной=2, ОО1-высота пирамиды=7, АС=корень(АД в квадрате+СД в квадрате)=корень(100+100)=10*корень2, А1С1=корень(А1Д1 в квадрате+С1Д1 в квадрате)=корень(4+4)=2*корень2,
рассматриваем АА1С1С как равнобокую трапецию, АА1=СС1, проводим высоты А1К и С1Н на АС, КА1С1С-прямоугольник А1С1=КН=2*корень2, А1К=С1Н=ОО1=7-высота, треугольник АА1К=треугольник НС1С как прямоугольные по гипотенузе и катету, АК=СН=(АС-КН)/2=(10*корень2-2*корень2)/2=4*корень2
АН=АК+КН=4*корень2+2*корень2=6*корень2, треугольник АС1Н прямоугольный, АС1-диагональ пирамиды=корень(АН в квадрате+С1Н в квадрате)=корень(72+49)=11