Диагонали равны √21 и √61; площадь равна √300=5√12=10√3
Объяснение:
∠ADC=60°; cos 60°=1/2;
По теореме косинусов AC=√DC²+AD²-2*DC*AD*cos 60°
AC=√25+16-20=√21
∠DAB=180-∠ADC=180-60=120°; cos 120°= -(cos 60°)= -(1/2); AB=DC=5
По теореме косинусов DB=√AD²+AB²-2*AD*AB*cos 120°
DB=√16+25-(-20)=√16+45=√61
sin 60°=√3/2
По теореме площади параллелограмма S=AD*DC*sin 60°=20*√3/2=10√3°
Или можно найти высоту и умножить её на основание:
Проведём AH ⊥ DC; ∠DAH=180-90-60=30° ⇒ DH=AD/2=2 см
По теореме прямоугольных треугольников AH=√AD²-DH²=√16-4=√12
S=AH*DC=5AH; S=5√12
10√3=√10*10*3=√300
5√12=√5*5*12=√300
Оба решения дают один и тот же верный ответ.
Буду очень признателен, если поставишь мне лучший ответ. Мне не хватает ровно одного...
Поделитесь своими знаниями, ответьте на вопрос:
4. Дан тупой угол Сов и точка A, лежащая в его внутренней области. 1) Постройте луч OE проходящий через точку А и лежащий внутри угла сов2) Запишите, чему равна величина угла сов3) Постройте развернутый угол АОМ
Обязательно смотрим рисунок.
И примем во внимание, что получающиеся трапеции подобны не исходной.
Если трапеции ALFD и LBCF подобны, то a/LF = LF/b.
Отсюда LF = √(ab).
Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.
---
Делим трапецию:
1 отрезок между основаниями исходной:
х²=2*8=16
х=√16=4
Второй отрезок между первым и основанием исходной трапеции
у²=4*8=32
у =√32=4√2
Третий отрезок - идет под меньшим основанием
z²=2*4=8
z=2√2
---------------------------
Отрезки в рисунке идут в таком порядке
z, x, y
---------------
Коэффициент подобия между этими четырьмя трапециями попарно ( смежными) равен
4:2√2=2:√2=2√2:√2·√2=2√2:2=√2
k=√2
Площади подобных фигур относяся как квадрат коэффициента их подобия.
Для этих трапеций это
(√2)²=2
Площадь второй по величине относится к нижней -большей- как 1:2=1/2
Третьей ко второй 1/2:2=1/4
и последней
1/8
сложим площади
1/2+1/4+1/8 =( 4+2+1)/8=7/8
7/8 < 1
Площадь самой большой из этих четырёх трапеций больше суммы площадей остальных трёх