Объяснение:
Обозначим наш треугольник точками АВС, в котором угол В = 120°, так как сторона АВ = ВС следовательно угол А = С (свойства равнобедренных треугольников), а поскольку сумма углов треугольника равна 180°, тогда сумма углов А и С равняется 180-120=60, то есть А = С = 30°.
Проводим высоту ВD, которая образует прямоугольный треугольник АВD. Катет ВD лежит против угла 30°, значит равен половине гипотинузы АВ. ВD = 6/2 = 3. По теореме Пифагора находим второй катет АD.
АD = √(36-9)=√27=3√3
Так как в равнобедренном треугольнике высота является и медианой, тогда АС = АD + DС = 3√3 + 3√3 = 6√3
Периметр треугольника - это сумма всех сторон
Р = 6√3 + 6 + 6 = 6√3 + 12
ответ: 6√3 + 12
П.С. я вроде бы все понятно расписал, надеюсь, что рисунок сделаешь сам(а), если нет пиши в комментарии я сфоткаю, отправлю
Поделитесь своими знаниями, ответьте на вопрос:
3 правильных треугольника с длинами сторон a, b, c, расположенные, как показано, имеют общую вершину и не имеют других общих точек. Определим длины x, y, z, как показано на рисунке. Докажите, что 3 *(x+y+z) > 2 * ( a+b+c
Дано:
ABCS - правильная треугольная пирамида
SO - высота пирамиды SO⊥(ABC)
Sбок = 96 см²
Sполн = 112 см²
-----------------------------
Найти:
AB - ?
SO - ?
1) Сначала запишем формулу площадь полной поверхности пирамиды, именно по такой формуле мы найдем площадь основания:
Sполн = Sбок + Sосн - Площадь полной поверхности пирамиды ⇒
Sосн = Sполн - Sбок = 112 см² - 96 см² = 16 см²
2) Поскольку треугольная пирамида правильная, то в основе лежит правильный треугольник. Следовательно, мы найдем сторону его основания:
- Площадь основания правильной пирамиды
- Сторона его основания
AB = √4×16 см²/√3 = √64 см²/√3 × √3/√3 = √64√3 см²/3 =
3) Далее находим радиус вписанной окружности основания:
AB = MO×2√3 - нахождение стороны основания.
MO = AB/2√3 - радиус вписанной окружности основания
MO =
4) Далее находим площадь грани:
Sбок = 3Sграни ⇒ Sграни = Sбок/3 = 96 см²/3 = 32 см², тогда высота грани:
SM = 2Sграни/AB - Высота с площадью грани
5) И теперь находим высоту SO по теореме Пифагора:
SO = √SM² - MO² - нахождение высоты SO
ответ:
P.S.
Рисунок показан внизу:↓