задача решается очень элегантным дополнительным построение
пусть трапеция АВСD. АС = 3; ВD = 5; AD и ВС - основания.
Через точку D проводим прямую II АС до пересечения с продолжением AD. Точка пересечения - E. Площадь треугольника ACE равна площади трапеции (у них общая высота и одинаковая средняя линяя, поскольку АЕ = AD + BC.
Отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей О. Собственно, из подобия АОD и BOC следует, что медианы из точки О в обоих треугольниках составляют одинаковые углы с основаниями, то есть это - одна прямая, соединяющая середины оснований. Треугольник АСЕ Тоже подобен АОD и BOC, и поэтому медиана в нем II этому отрезку. А значит, она ему равна :).
Итак, Площадь треугольника ACE равна площади трапеции, и в АСЕ известны 2 стороны 3 и 5 и медиана 2. Продолжим медиану СМ за её основание М на 2 и соединим полученную точку Р с A и Е. Получим параллелограмм ACEP. Ясно из свойств параллелограма что площадь АСЕ = площадь CPE.
СРЕ - треугольник с заданными сторонами РЕ = 5, СЕ = 3, СР = 2*2 = 4.
Найти его площадь в общем случае можно по формуле Герона, но тут все просто - треугольник СРЕ прямоугольный (это просто следствие того что 9 + 16 = 25), и его площадь S = (1/2)*3*4 = 6.
Удивительно, ввел решение, и увидел, что задачу решили так же как и я : это приятно :)
Поделитесь своими знаниями, ответьте на вопрос:
Даны точки А(-6;2), В(-1;-9) , С(8;2 Найти координаты точки М(х;у), чтобы выполнялось равенство АВ=См
ответ:
средневековье. после падения александрии большинство работ древнегреческих были рассеяны или утрачены.за последние 300 лет доказательная была существенно расширена, а по своим и степени общности результатов она стала заметно отличаться от элементарной (т.е. , изложенной в началах). французский ж.дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств фигур в зависимости от их проекций. тем самым он заложил основу проективной , которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. в 19 в. это направление получило существенное развитие. проективная , конические сечения и новая треугольников и окружностей составили содержание современной т.н. чистой .