Треугольники ABC и MNP подобны. Периметр треугольника ABC равен 39. Периметр треугольника MNP равен 273.Найти площадь треугольника MNP, если площадь треугольника ABC равна 19.
начертим прямоугольный треугольник АВС так, что бы справа у него был прямой угол.
проведём из прямого угла сначала медиану, а потом биссектрису другим цветом(что б не запутаться.)
Обазначим медиану СD, а биссектрису СX
Слева будет острый угол, равный 34.
тогда по свойству прям. угол. треуг. медиана, проведённая из вершины прямого угла равна половине гипотенузы.
Отмечаем это на черчеже.
Видим, что у нас образовался р/б треугольгик АСD.
У него есть острый угол равный 34- по мусловию.
Тогда по св0ву р/б треуг. углы при основании равны.
тогда угол DCA равен 34.
Но мы знаем, что биссектриса делит прямой угол пополам.
Тогда угол ВСА : 2 равно 45 равно углы DCX и XCA.
Теперь мы вычитаем из угла XCA угол DCA равно 45-34=11 градусов
Равно угол XCD
chernova1exei862
24.02.2022
Пусть ABCD – трапеция, CD = 2 см, АВ = 3 см, BD = 3 см и АС = 4 см. Чтобы известные элементы включить в один треугольник, перенесём диагональ BD на вектор DC в положение СВ'. Рассмотрим треугольник АСВ1. Так как ВВ'CD – параллелограмм, то В'С = 3 см, АВ' = АВ + ВВ' = АВ + CD = 5 см. Теперь известны все три стороны треугольника АВ'С. Так как АС²+ В'С²= АВ'²= 16+9=25, то треугольник АВ'С – прямоугольный, причем АСВ' = 90°. Отсюда непосредственно следует, что угол между диагоналями трапеции, равный углу АСВ', составляет 90°. Площадь трапеции, как и всякого четырёхугольника, равна половине произведения диагоналей на синус угла между ними. Отсюда площадь равна 1/2AC * BD * sin 90° = 1/2 * 4 * 3 * 1 = 6 см²
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Треугольники ABC и MNP подобны. Периметр треугольника ABC равен 39. Периметр треугольника MNP равен 273.Найти площадь треугольника MNP, если площадь треугольника ABC равна 19.
11 градусов
Объяснение:
начертим прямоугольный треугольник АВС так, что бы справа у него был прямой угол.
проведём из прямого угла сначала медиану, а потом биссектрису другим цветом(что б не запутаться.)
Обазначим медиану СD, а биссектрису СX
Слева будет острый угол, равный 34.
тогда по свойству прям. угол. треуг. медиана, проведённая из вершины прямого угла равна половине гипотенузы.
Отмечаем это на черчеже.
Видим, что у нас образовался р/б треугольгик АСD.
У него есть острый угол равный 34- по мусловию.
Тогда по св0ву р/б треуг. углы при основании равны.
тогда угол DCA равен 34.
Но мы знаем, что биссектриса делит прямой угол пополам.
Тогда угол ВСА : 2 равно 45 равно углы DCX и XCA.
Теперь мы вычитаем из угла XCA угол DCA равно 45-34=11 градусов
Равно угол XCD